from COFGA_dataset import CofgaDataset # ## Define run # define name of output files results_name = "ResNet50_no_aug__map.csv" results_name_AP_val = "ResNet50_no_aug__AP_val.csv" results_name_AP_train = "ResNet50_no_aug_AP_train.csv" # ## Data augmentation data_transform = None # ## Loading the data # loading the custom dataset dataset = CofgaDataset( csv_file='/zhome/b0/8/88043/COFGA_Project/dataset/train_preprocessed.csv', root_dir='/zhome/b0/8/88043/COFGA_Project/dataset/root/train/resized/', transform=data_transform) print("Total number of images: ", len(dataset)) COFGA_headers = pd.read_csv( '/zhome/b0/8/88043/COFGA_Project/dataset/train_preprocessed.csv') COFGA_labels = COFGA_headers.columns.tolist() COFGA_labels.pop(0) COFGA_labels.insert(0, "epoch") # ## Constructing trainLoader and validation loader batch_size = 32
#performing vertical flip with a gven probability prob = 0.8 vert_transform = transforms.Compose([ transforms.RandomVerticalFlip(prob), transforms.ToTensor(), ]) # allows to chose randomly from the different transformations transform_list = transforms.RandomChoice( [rotation_transform, hoz_transform, vert_transform]) # ## Loading the data # loading the custom dataset dataset = CofgaDataset(csv_file='dataset/train_preprocessed.csv', root_dir='dataset/root/train/resized/', transform=transform_list) print("Total number of images: ", len(dataset)) COFGA_headers = pd.read_csv('dataset/train_preprocessed.csv') COFGA_labels = COFGA_headers.columns.tolist() COFGA_labels.pop(0) COFGA_labels.insert(0, "epoch") # ## Constructing trainLoader and validation loader batch_size = 32 # fraction of dataset to be validation set