Esempio n. 1
0
def get_and_save_quotes_data(etfname, date):
    etfname = etfname
    date = date
    etfData = LoadHoldingsdata().LoadHoldingsAndClean(etfname=etfname,
                                                      fundholdingsdate=date)
    ob = TradesQuotesProcesses(symbols=etfData.getSymbols(), date=date)
    ob.fetch_and_store_runner(collection_name=quotesCollection)
    quotesDataDf = ob.get_data(collection_name=quotesCollection,
                               pipeline=quotespipeline)
    print(quotesDataDf)
    print("SAVED Quotes for {} {}".format(etfname, date))
Esempio n. 2
0
def get_unique_ticker_list_for_trades(top_10_etf_list):
    load_holdings_object = LoadHoldingsdata()
    unique_ticker_list = [
        load_holdings_object.LoadHoldingsAndClean(
            etfname=etf, fundholdingsdate=_date).getSymbols()
        for etf in top_10_etf_list
    ]
    unique_ticker_list = list(chain.from_iterable(unique_ticker_list))
    unique_ticker_list = [
        ticker.split(' ')[0] for ticker in unique_ticker_list
    ]
    unique_ticker_list = list(set(unique_ticker_list))
    return unique_ticker_list
Esempio n. 3
0
 def all_process_runner_trades(self, symbols=None, date_for=None):
     if not symbols:
         etf_data = LoadHoldingsdata().LoadHoldingsAndClean(
             etfname=self.etf_name, fundholdingsdate=self.date)
         symbols = etf_data.getSymbols()
     # symbols_to_download = [symbol for symbol in symbols if
     #                        not self.symbol_check_trades(symbol=symbol, collection=self.per_sec_live_trades)]
     trades_quotes_proc_obj = TradesQuotesProcesses(symbols=symbols,
                                                    date=date_for)
     print("Processing historic trade data")
     trades_quotes_proc_obj.trades_fetch_and_store_runner_live(
         collection_name=self.connection.ETF_db.PerSecLiveTrades,
         per_sec_create_url_func=self.create_urls_for_trades)
def getAndSaveTradesData(etfname, date):
    etfname = etfname
    date = date
    etfData = LoadHoldingsdata().LoadHoldingsAndClean(etfname=etfname,
                                                      fundholdingsdate=date)
    ob = TradesQuotesProcesses(symbols=etfData.getSymbols(), date=date)
    ob.fetch_and_store_runner(collection_name=tradeCollection,
                              trade_data_flag=True)
    tradesDataDf = ob.get_data(collection_name=tradeCollection,
                               pipeline=tradespipeline)
    tradesDataDf['Trade Price'] = (tradesDataDf['High Price'] +
                                   tradesDataDf['Low Price']) / 2
    print(tradesDataDf)
    print("SAVED {} {}".format(etfname, date))
 def fetch_all_data(self, etf_name, date):
     """Load the ETF Holding"""
     etf_data = LoadHoldingsdata().LoadHoldingsAndClean(
         etfname=etf_name, fundholdingsdate=date)
     '''Load all the data - Holdings data for Etf, trade data, quotes data, open-close price'''
     all_data = DataApi(etfname=etf_name, date=date, etfData=etf_data)
     all_data.run_all_data_ops()
     return etf_data, all_data
Esempio n. 6
0
def ETFandHoldingsData(ETFName, date):
    try:
        MongoDBConnectors().get_mongoengine_devlocal_devlocal()
        # Load all the data holdings data together
        etfdata = LoadHoldingsdata().getAllETFData(ETFName, date)
        if type(etfdata) == Response:
            return etfdata
        ETFDataObject = etfdata.to_mongo().to_dict()
        print(ETFDataObject)
        HoldingsDatObject = pd.DataFrame(ETFDataObject['holdings']).set_index('TickerSymbol').T.to_dict()


        ETFDataObject['TotalAssetsUnderMgmt'] = "${:,.3f} M".format(ETFDataObject['TotalAssetsUnderMgmt'] / 1000)
        ETFDataObject['SharesOutstanding'] = "{:,.0f}".format(ETFDataObject['SharesOutstanding'])
        ETFDataObject['InceptionDate'] = str(ETFDataObject['InceptionDate'])

        # List of columns we don't need
        for v in ['_id', 'DateOfScraping', 'ETFhomepage', 'holdings', 'FundHoldingsDate']:
            del ETFDataObject[v]

        ETFDataObject = pd.DataFrame(ETFDataObject, index=[0])
        ETFDataObject = ETFDataObject.replace(np.nan, 'nan', regex=True)
        ETFDataObject = ETFDataObject.loc[0].to_dict()

        allData = {}
        allData['ETFDataObject'] = ETFDataObject
        allData['HoldingsDatObject'] = HoldingsDatObject

        print(ETFDataObject)
        print(allData['HoldingsDatObject'])

        return allData

    except Exception as e:
        print("Issue in Flask app while fetching ETF Description Data")
        print(traceback.format_exc())
        return str(e)
Esempio n. 7
0
def fetchHoldingsData(ETFName, StartDate):
    res = api_auth_object.authenticate_api()
    if type(res) == Response:
        return res
    try:
        etfdata = LoadHoldingsdata().getAllETFData(ETFName, StartDate)
        if type(etfdata) == Response:
            return etfdata
        ETFDataObject = list(etfdata)[0]
        # HoldingsDatObject=pd.DataFrame(ETFDataObject['holdings']).set_index('TickerSymbol').round(2).T.to_dict()
        # print(HoldingsDatObject)
        return jsonify(ETFDataObject['holdings'])
    except Exception as e:
        exc_type, exc_value, exc_tb = sys.exc_info()
        traceback.print_exc()
        return MultipleExceptionHandler().handle_exception(
            exception_type=exc_type, e=e, custom_logger=server_logger)
 def ETFHoldJsonData(self, etfname):
     try:
         df = None
         df = LoadHoldingsdata().getHoldingsDatafromDB(
             etfname, (datetime.datetime.now() -
                       datetime.timedelta(days=1)).strftime("%Y-%m-%d"))
         return self.convertDataToDict(df, etfname)
     except Exception as e:
         self.raiseError(errorType=1)
         # Get the last date from the mongodb this time usine Schemas.py Pymongo, we are fetching last occurence
         etfdata = etfholdings_collection.find({
             'ETFTicker': etfname
         }).sort("FundHoldingsDate", -1).limit(1)
         for data in etfdata:
             df = pd.DataFrame(data['holdings'])
         return self.convertDataToDict(
             df, etfname) if df is not None else self.raiseError(
                 errorType=2)
Esempio n. 9
0
def getDailyChangeUnderlyingStocks(ETFName, date):
    res = api_auth_object.authenticate_api()
    if type(res) == Response:
        return res
    if checkifDateIsBeforeJuneFive(date):
        return CustomAPIErrorHandler().handle_error(
            'Data only available before June 5th 2020, please choose a date after 5th June',
            500)
    try:

        etfdata = LoadHoldingsdata().getAllETFData(ETFName, date)
        if type(etfdata) == Response:
            return etfdata
        ETFDataObject = list(etfdata)[0]
        TickerSymbol = pd.DataFrame(
            ETFDataObject['holdings'])['TickerSymbol'].to_list()
        TickerSymbol.remove('CASH') if 'CASH' in TickerSymbol else TickerSymbol
        openclosedata_cursor = connection.ETF_db.DailyOpenCloseCollection.find(
            {
                'dateForData': datetime.strptime(date, '%Y%m%d'),
                'Symbol': {
                    '$in': TickerSymbol
                }
            }, {'_id': 0})
        responses = list(openclosedata_cursor)
        responses = pd.DataFrame.from_records(responses)
        responses['DailyChangepct'] = (
            (responses['Close'] - responses['Open Price']) /
            responses['Open Price']) * 100
        responses['DailyChangepct'] = responses['DailyChangepct'].round(3)
        responses.rename(columns={
            'Symbol': 'symbol',
            'Volume': 'volume'
        },
                         inplace=True)
        return jsonify(responses[['symbol', 'DailyChangepct',
                                  'volume']].to_dict(orient='records'))
    except Exception as e:
        exc_type, exc_value, exc_tb = sys.exc_info()
        traceback.print_exc()
        return MultipleExceptionHandler().handle_exception(
            exception_type=exc_type, e=e, custom_logger=server_logger)
Esempio n. 10
0
 def remove_old_trades_quotes_for_the_date_etf(self):
     """REMOVE ALL QUOTES DATA AND TRADES DATA FOR THE UPDATED ETF LIST FOR THE GIVEN DATE"""
     try:
         del_list = self.etflist.copy()
         if getpass.getuser() == 'ubuntu':
             rem_conn = MongoDBConnectors().get_pymongo_readWrite_production_production()
         else:
             rem_conn = MongoDBConnectors().get_pymongo_devlocal_devlocal()
         quotes_del = rem_conn.ETF_db.QuotesData.delete_many(
             {'dateForData': datetime.strptime(self.date, '%Y-%m-%d'), 'symbol': {'$in': del_list}})
         print(quotes_del.deleted_count)
         sym_list = [del_list.extend(
             LoadHoldingsdata().LoadHoldingsAndClean(etf, datetime.strptime(self.date, '%Y-%m-%d')).getSymbols()) for
             etf
             in self.etflist]
         trades_del = rem_conn.ETF_db.TradesData.delete_many(
             {'dateForData': datetime.strptime(self.date, '%Y-%m-%d'), 'symbol': {'$in': del_list}})
         print(trades_del.deleted_count)
     except Exception as e:
         logger.exception(e)
         logger2.exception(e)
         pass
Esempio n. 11
0
def SendETFHoldingsData(ETFName, date):
    res = api_auth_object.authenticate_api()
    if type(res) == Response:
        return res
    try:
        allData = {}
        etfdata = LoadHoldingsdata().getAllETFData(ETFName, date)
        if type(etfdata) == Response:
            return etfdata
        ETFDataObject = list(etfdata)[0]

        allData['SimilarTotalAsstUndMgmt'] = fetchETFsWithSimilarTotAsstUndMgmt(
            connection=connection,
            totalassetUnderManagement=ETFDataObject['TotalAssetsUnderMgmt'])

        ETFDataObject['TotalAssetsUnderMgmt'] = "${:,.3f} M".format(
            ETFDataObject['TotalAssetsUnderMgmt'] / 1000)
        ETFDataObject['SharesOutstanding'] = "{:,.0f}".format(
            ETFDataObject['SharesOutstanding'])
        ETFDataObject['InceptionDate'] = str(ETFDataObject['InceptionDate'])
        # List of columns we don't need
        for v in [
                '_id', 'DateOfScraping', 'ETFhomepage', 'holdings',
                'FundHoldingsDate'
        ]:
            del ETFDataObject[v]
        ETFDataObject = pd.DataFrame(ETFDataObject, index=[0])
        ETFDataObject = ETFDataObject.replace(np.nan, 'nan', regex=True)
        ETFDataObject = ETFDataObject.loc[0].to_dict()
        allData['ETFDataObject'] = ETFDataObject
        return json.dumps(allData)
    except Exception as e:
        exc_type, exc_value, exc_tb = sys.exc_info()
        traceback.print_exc()
        return MultipleExceptionHandler().handle_exception(
            exception_type=exc_type, e=e, custom_logger=server_logger)
Esempio n. 12
0
def make_etf_objects(_date, etf_name):
    holdings_dict = LoadHoldingsdata().LoadHoldingsAndClean(
        etfname=etf_name, fundholdingsdate=_date).getETFWeights()
    return ETF(etf_name=etf_name, holdings_dict=holdings_dict)
Esempio n. 13
0
def get_ticker_list_for_etf(date, etf_name) -> list:
    ticker_list = LoadHoldingsdata().LoadHoldingsAndClean(
        etfname=etf_name, fundholdingsdate=date).getSymbols()
    return ticker_list