Esempio n. 1
0
def cochrans(conf, prop):

    z_critical = z_critical = scipy.stats.norm.ppf(1 - (1 - conf) / 2)
    z_critical_squared = squaring(z_critical)

    e = (1-conf)
    e_squared = squaring(e)
    cochrans_n = ceil((z_critical_squared * prop * (1-prop)) / e_squared)

    return cochrans_n
Esempio n. 2
0
def variance(num):
    try:
        pop_mean = populationmean(num)
        num_values = len(num)
        x = 0
        for i in num:
            x = x + squaring(i - pop_mean)
        return round(division(x, num_values), 3)
    except ValueError:
        print("Error with data")
Esempio n. 3
0
    def known_pop_sample(data, seed):

        z_s = Z_Score.zscore(data, seed)
        m_e = MarginError.margin(data, seed)
        s_d = StandardDeviation.standard_deviance(data)

        value = (z_s * s_d) / m_e

        popSample = squaring(value)

        return popSample
    def unknown_pop_sample(data, seed, percent):

        z_s = Z_Score.zscore(data, seed)
        m_e = MarginError.margin(data, seed)
        p = percent
        q = subtraction(1, p)

        val = division(z_s, m_e)
        samplePop = squaring(val) * p * q

        return samplePop
Esempio n. 5
0
def variance(a):
    try:
        a_mean = mean(a)
        n = len(a)
        x = 0
        for i in a:
            x = x + squaring(i - a_mean)
        return division(x, n)
    except ZeroDivisionError:
        print("Error: Can't Divide by 0")
    except ValueError:
        print("Error: Check your data inputs")
Esempio n. 6
0
def samplevariance(num):
    try:
        pop_mean = populationmean(num)
        num_values = len(num)
        x = 0
        for i in num:
            x = x + squaring(i - pop_mean)
        return round(division(x, num_values), 7)
    except ZeroDivisionError:
        print("Error: Can't Divide by 0")
    except ValueError:
        print("Error: Check your data inputs")
Esempio n. 7
0
def findsamplesize(conf, width):

    z_critical = z_critical = scipy.stats.norm.ppf(1 - (1 - conf) / 2)
    z_critical_squared = squarerooting(z_critical)

    moe = width / 2
    p_hat  = .5

    q_hat = 1 - p_hat

    p_times_q = p_hat * q_hat

    z_div_moe = z_critical / moe
    z_div_moe_squared = squaring(z_div_moe)

    n = ceil(p_times_q * z_div_moe_squared)

    return n
Esempio n. 8
0
 def square(self, a):
     self.result = squaring(a)
     return self.result