Esempio n. 1
0
def main():
    """ Main script. Show how to perform all competition steps """
    # Data folder (Training data)
    data='./data/';
    # Train folder (output)
    outTrain='./training/train/'
    # Test folder (output)
    outTest='./training/test/'
    # Predictions folder (output)
    outPred='./results/step1all/';
    # Ground truth folder (output)
    outGT='./GT/';
    # Submision folder (output)
    outSubmision='./submision/'

    # Divide data into train and test
    # createDataSets(data,outTrain,outTest,0.3);

    # Learn your model
    # if os.path.exists("model.npy"):
    #     model=numpy.load("model.npy");
    # else:
    #     model=learnModel(outTrain);
    #     numpy.save("model",model);

    # # Predict over test dataset
    # predict(model,outTest,outPred);

    # # Create evaluation gt from labeled data
    # exportGT_Gesture(outTest,outGT);

    # Evaluate your predictions
    score=evalGesture(outPred, outGT);
    print("The score for this prediction is " + "{:.12f}".format(score));
Esempio n. 2
0
def main():

    prediction_dir = r'I:\Kaggle_multimodal\StartingKit_track3\CoDaLab_Gesure_track3\matlab\prediction_650_conv'
    #prediction_dir =  r'I:\Kaggle_multimodal\StartingKit_track3\CoDaLab_Gesure_track3\matlab\prediction_650'
    #truth_dir = r'I:\Kaggle_multimodal\validation_labels'
    truth_dir = r'I:\Kaggle_multimodal\validation'
    final_score = evalGesture(prediction_dir, truth_dir)
    print "final_score " + str(final_score)
def main():

   prediction_dir =  r'I:\Kaggle_multimodal\StartingKit_track3\CoDaLab_Gesure_track3\matlab\prediction_650_conv'
   #prediction_dir =  r'I:\Kaggle_multimodal\StartingKit_track3\CoDaLab_Gesure_track3\matlab\prediction_650'
   #truth_dir = r'I:\Kaggle_multimodal\validation_labels'
   truth_dir = r'I:\Kaggle_multimodal\validation'
   final_score = evalGesture(prediction_dir,truth_dir)
   print "final_score "+str(final_score)
                frames_count = numpy.array(
                    range(begin_frame[i], end_frame[i] + 1))
                pred_label_temp = ((pred_label[i] - 1) * 10 + 5) * numpy.ones(
                    len(frames_count))
                plt.plot(frames_count,
                         pred_label_temp,
                         color='#ffff00',
                         linewidth=2.0)

            plt.show()
        else:
            print "Elapsed time %d sec" % int(time.time() - time_tic)

            pred = []
            for i in range(len(begin_frame)):
                pred.append([pred_label[i], begin_frame[i], end_frame[i]])

            smp.exportPredictions(pred, outPred)

    # ###############################################
    ## delete the sample
        del smp

TruthDir = './training/gt/'
final_score = evalGesture(outPred, TruthDir)
print("The score for this prediction is " + "{:.12f}".format(final_score))
# Submision folder (output)
outSubmision = './training/submision/'
# Prepare submision file (only for validation and final evaluation data sets)
createSubmisionFile(outPred, outSubmision)
from ChalearnLAPEvaluation import evalGesture


predPath=r'.\training\test/'
predPath=r'.\ConvNet_3DCNN\training\Test_3DCNN_ConvNet__2014-06-25_18.21.33_250/'
#predPath=r'I:\Kaggle_multimodal\Code_for_submission\Final_project\ConvNet_3DCNN\training\pred_sk_norm'
#predPath=r'I:\Kaggle_multimodal\StartingKit_track3\Final_project\training\test_combined/'


TruthDir=r'I:\Kaggle_multimodal\ChalearnLAP2104_EvaluateTrack3\input/ref/'
#TruthDir=r'I:\Kaggle_multimodal\Valid_650_labels/'
final_score = evalGesture(predPath,TruthDir, begin_add=0, end_add=0) 
print("The score for this prediction is " + "{:.12f}".format(final_score))

#The score for this prediction is 0.816150551922--combined
#The score for this prediction is 0.787309630209--skeleton
        cPickle.dump(dic, out_file, protocol=cPickle.HIGHEST_PROTOCOL)
        out_file.close()


        pred=[]
        for i in range(len(begin_frame)):
            pred.append([ pred_label[i], begin_frame[i], end_frame[i]] )

        smp.exportPredictions(pred,outPred)
        # ###############################################
        ## delete the sample
        del smp          
        

  

TruthDir=r'I:\Kaggle_multimodal\ChalearnLAP2104_EvaluateTrack3\input\ref//'
CNN_NAME = 'ConvNet__2014-05-28_01.59.00_150'
outPred='./ConvNet_3DCNN/training/Test_3DCNN_' + CNN_NAME
final_score = evalGesture(outPred,TruthDir)         
print("The score for this prediction is " + "{:.12f}".format(final_score))
# Submision folder (output)
outSubmision='./training/submision/'
# Prepare submision file (only for validation and final evaluation data sets)
createSubmisionFile(outPred, outSubmision)

#ConvNet__2014-06-25_18.21.33_250 The score for this prediction is 0.637141036068
#ConvNet__2014-06-25_18.56.59_162 The score for this prediction is 0.679523343823
#ConvNet__2014-05-28_01.59.00_150 The score for this prediction is 0.702863204283
#'I:\Kaggle_multimodal\StartingKit_track3\Final_project\ConvNet_3DCNN\tmp\ConvNet__2014-05-26_03.40.18'
# The score for this prediction is 0.702863204283
                    plt.plot(frames_count, pred_label_temp, color='#ffff00', linewidth=2.0)

                from pylab import *
                if True:
                    save_dir=r'.\ConvNet_3DCNN\training\Depth_path_combined'
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir)     
                    save_path= os.path.join(save_dir,file)
                    savefig(save_path, bbox_inches='tight')
                    #plt.show()
                else: 
                    plt.show()

            #def exportPredictions(self, prediction,predPath):
            """ Export the given prediction to the correct file in the given predictions path """
            if not os.path.exists(predPath):
                os.makedirs(predPath)
            output_filename = os.path.join(predPath,  file + '_prediction.csv')
            output_file = open(output_filename, 'wb')
            for row in prediction:
                output_file.write(repr(int(row[0])) + "," + repr(int(row[1])) + "," + repr(int(row[2])) + "\n")
            output_file.close()



TruthDir='./training/gt/'
final_score = evalGesture(predPath,TruthDir)         
print("The score for this prediction is " + "{:.12f}".format(final_score))

# The score for this prediction is 0.830624726889!!!!!!!!!! Combine two depth!!!!!
from ChalearnLAPEvaluation import evalGesture

predPath = r'.\training\test/'
predPath = r'.\ConvNet_3DCNN\training\Test_3DCNN_ConvNet__2014-06-25_18.21.33_250/'
#predPath=r'I:\Kaggle_multimodal\Code_for_submission\Final_project\ConvNet_3DCNN\training\pred_sk_norm'
#predPath=r'I:\Kaggle_multimodal\StartingKit_track3\Final_project\training\test_combined/'

TruthDir = r'I:\Kaggle_multimodal\ChalearnLAP2104_EvaluateTrack3\input/ref/'
#TruthDir=r'I:\Kaggle_multimodal\Valid_650_labels/'
final_score = evalGesture(predPath, TruthDir, begin_add=0, end_add=0)
print("The score for this prediction is " + "{:.12f}".format(final_score))

#The score for this prediction is 0.816150551922--combined
#The score for this prediction is 0.787309630209--skeleton
Esempio n. 9
0
#input_dir = sys.argv[1]
#output_dir = sys.argv[2]
input_dir = './'
output_dir = './result'

submit_dir = os.path.join(input_dir, 'prediction')
truth_dir = os.path.join(input_dir, 'reference')

print(submit_dir)
print(truth_dir)

if not os.path.isdir(submit_dir):
    print("%s doesn't exist" % submit_dir)

if os.path.isdir(submit_dir) and os.path.isdir(truth_dir):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    output_filename = os.path.join(output_dir, 'scores.txt')
    output_file = open(output_filename, 'w')

    # Call evaluation for this track
    score = evalGesture(submit_dir, truth_dir)
    print("Score: %f" % score)

    # Store the score
    output_file.write("Overlap: %f" % score)

    output_file.close()