'stride': [1, 1], 'padding': [2, 4], 'activation_fn': ['ReLU', 'Tanh'] } net_params_2 = { 'filter': 2, 'channel': [10, 1], 'kernel_size': [3, 5], 'stride': [1, 1], 'padding': [2, 4], 'activation_fn': ['ReLU6', 'Tanh'] } model_1 = ModelFocusCNN((84, 84), net_params=net_params_1) model_2 = ModelFocusCNN((84, 84), net_params=net_params_2) model_boost = ModelFocusBoost( LinearCPD(np.pi / 4), model_1, model_2, train_flags=[True, False], ) # parameters print(model_boost.count_parameters()) ones = np.arange(model_boost.count_parameters()) model_boost.set_parameters(ones) print(list(model_boost.parameters())) # forward out = model_boost.forward(torch.rand([100, 1, 84, 84])) print(out, out.shape)
dataset = DatasetAtari( 'BreakoutNoFrameskip-v4', # atari game name actor, # mock actor n_state=args.n_state, # set max number of states save_path='results', # save path for gym binarize=args.binarize, # binarize image to 0 and 1 ) """ Changepoint Detector - specify changepoint detector which fits the dynamic of the object """ if args.champ: cpd = CHAMPDetector('premise->object', CHAMP_params) else: logger.info('using simple linear changepoint detector') cpd = LinearCPD(np.pi / 4.0) """ Model Template & Constructor """ model = ModelCollectionDAG() net_params = json.loads(open(args.net).read()) if args.model_type == 'focus': train_model = ModelFocusCNN( image_shape=dataset.frame_shape, net_params=net_params, use_prior=args.prior, argmax_mode=args.argmax_mode, ) elif args.model_type == 'attn': train_model = ModelAttentionCNN( image_shape=dataset.frame_shape,
def __init__(self, *micp_losses, **kwargs): self.micp_losses = list(micp_losses) self.agg_fn = kwargs.get('agg_fn', sum) self.cp_detector = kwargs.get('cp_detector', LinearCPD(np.pi / 4))