Esempio n. 1
0
def main():

    number_of_data = 400
    # Create las object and calculate corresponding values
    filename = 'tiny'
    partition = 70
    las_obj = ProcessLas(filename, partition)

    pfm = PCPDS_Manager()
    dir_name = pfm.generate_collection(filename, partition)
    print('Dir:' + str(dir_name))

    las_obj.input_las(dir_name)
    datafile = open("bdripson70partitions.txt", "a")

    #import functions
    n_results = 4  # menu.get_n_result_input()

    for n in range(number_of_data):

        # Generates random idx value for pcpds object
        random_idx = str(las_obj.random_grid())

        random_pcpds = None
        first = True
        # TODO: Validate the idx from random_grid is valid, else run random_grid again.
        # Generate & validate a random_pcpds to use.
        while (not pfm.get_path_manager().validate_file(
                os.path.join(dir_name, random_idx + ".json")) or first):
            random_idx = str(las_obj.random_grid())
            print("Attempting RANDOM ID:", random_idx)
            first = False

        # Grabs the pcpds object that was generated
        random_pcpds = pfm.get_pcpds(random_idx)
        # Calculate bottleneck distance, print n_result matches
        closest_matches = bottleneck_distances.search_distances(
            n_results, random_pcpds.get_persistance_diagram(), dir_name)

        datafile.write(str(random_idx))
        datafile.write(":")

        # Calculate bottleneck distance, print n_result matches
        for idx in closest_matches:
            datafile.write(str(idx))
            print(idx)
            datafile.write(",")
        datafile.write('\n')

        menu.progress(n, number_of_data,
                      ("Processing random grid: " + str(random_idx) + "..."))

    print("Job done.")
Esempio n. 2
0
    def split_pointcloud(self, coords, points, count=False):
        # Split up the list into sections depending on how many cpus are avalible
        for c,_  in enumerate(coords):
            x = math.floor(coords[c][0] * self.partition)
            y = math.floor(coords[c][1] * self.partition)

            x = str(x).zfill(self.leading_zeros)
            y = str(y).zfill(self.leading_zeros)
            z = str(1).zfill(self.leading_zeros)

            idx = int('1' + x + y + z)

            # Make a dictionary with each [idx], if it already exists, append the coord
            try:
                points[idx]
            except:
                points[idx] = coords[c]
            else:
                points[idx] = np.vstack((points[idx],coords[c]))
            # Keeps track of the progress of dividing up points
            if count:
                menu.progress(c, len(coords), ("Processing point: "+str(idx)+"..."))
def process_run():
     
    pcpds_manager = PCPDS_Manager()
    
    # List the directories
    
    # Ask for the directory
    print("Enter the Collection of pcpds objects you wish to generate persistance diagramsfor.")
    collection = menu.get_input("Directory: ")
    
    pcpds_manager.get_path_manager().set_cur_dir(collection)
    
    valid = pcpds_manager.get_collection_dir()
    
    while(not valid):
        print("Invalid collection name:", pcpds_manager.get_path_manager().get_cur_dir() ,"try again.", valid)
        collection = menu.get_input("Directory: ")
        pcpds_manager.get_path_manager().set_cur_dir(collection)
        valid = pcpds_manager.get_collection_dir()
    
    # Verify the directory
    
    print("Valid Directory Confirmed:", pcpds_manager.get_path_manager().get_full_cur_dir())
    
    # Loop for choosing filtration method:
    print("Choose a filtration method: [0] Rips, [1] Upper Star, [2] Lower Star.")
    choice = menu.get_int_input()
    while not (choice < 3 and choice > -1):
        print("Please enter a valid number between 0-2.")
        choice = menu.get_int_input()
    
    # Selects the filter function to be used.
    filter = None
    if choice is 0:
        filter = Filtration.get_rips_diagram
    elif choice is 1:
        filter = Filtration.get_upper_star
    elif choice is 2:
        filter = Filtration.get_lower_star
        
    # Start timer
    # start_time = time.time()
    
    print("Would you like to use multi-processing to attempt to speed things up? [0] No. [1] Yes.")
    print("Please do note that using multiprocessing only speeds up the generation of persistance diagrams with larger point clouds.")
    multiproc = menu.get_int_input()
    
    if(multiproc):
        # with concurrent.futures.ProcessPoolExecutor as executor:
        for file in os.listdir(pcpds_manager.get_path_manager().get_full_cur_dir_var(collection)):
            # Sets up the process
            # generate_persistence_diagram(pcpds_manager, file, filter)
            process = multiprocessing.Process(target=generate_persistence_diagram, args=(pcpds_manager, file, filter))
            process.start()
            process.join()
            process.terminate()
            
    else:
        print("NOT MULTIPROCESSING:")
        # Process the point clouds into persistance diagrams without using multiprocessing
        files = os.listdir(pcpds_manager.get_path_manager().get_full_cur_dir_var(collection))
        iter = 0
        for file in files:
            menu.progress(iter, len(files), ("Generating persistance diagram for:"+str(file)))
            generate_persistence_diagram(pcpds_manager, file, filter)
            iter += 1
        menu.progress(1, 1, "Generating persistance diagrams completed.")
Esempio n. 4
0
def main():

    pfm = PCPDS_Manager()
    number_of_data = 200 #Max 256 when saving to excel
    num_partitions_to_slide = 3

    # Will need the filtration method for new point cloud filtering later.
    filt_method = None
    leading_zeros = 0
    dir_name = ""

    pfm.get_path_manager().set_cur_dir("")

    valid = False


    print("Please enter a collection that has already been filtered:")
    # If not a valid directory, ask again saying it is invalid
    while(not valid):
        if not pfm.get_collection_dir():
            print("Invalid collection name:", pfm.get_path_manager().get_cur_dir(), "try again.")
        dir_name = menu.get_input("Directory: ")
        pfm.get_path_manager().set_cur_dir(dir_name)
        valid = pfm.get_collection_dir()

        # Checks the first pcpds object in this directory for if it has a persistance diagram
        pcpds_temp = None
        for file in os.listdir(pfm.get_path_manager().get_full_cur_dir_var(dir_name)):
            file_path = os.path.join(pfm.get_path_manager().get_full_cur_dir(), file)
            pcpds_temp = file_manager.load(file_path)
            break
        if pcpds_temp is not None:
            if pcpds_temp.get_persistance_diagram() is not None:
                print("Valid Directory Chosen:", valid)
                # Stores the filtration method used to form the persistence diagram for later use.
                filt_method = pcpds_temp.get_filtration_used()
                # Stores the leading zeros here based on the directory name.
                break
            else:
                valid = False
                print("\nNo persistance diagram present for files @ collection:", pfm.get_path_manager().get_full_cur_dir() + ".\n")
                print("Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection.")
        else:
            print("Problem loading pcpds file, it loaded as None.")

    wb = Workbook()
    excel_sheet = wb.add_sheet('Sheet 2')

    # Grabs the leading_zeros variable using X from a random idx's cell_ID.
    tmp_cellID = pfm.get_random_pcpds().get_cellID()
    leading_zeros = int((len(str(tmp_cellID))-1)/3)

    print("LEADING ZEROS:", leading_zeros)
    for n in range(number_of_data):

        pcpds = None

        valid_idx = False
        while valid_idx == False:

            # Grabs a random pcpds from the currently selected directory.
            pcpds = pfm.get_random_pcpds()
            (X, Y, Z) = pcpds.get_xyz()

            print("XYZ of random pcpds: Z", X, "Y:", Y, "Z:", Z)
            # Do this to check for if we are on a lower bound to avoid errors from negative values.
            if X < 1 or Y < 1:
                print("Invalid XYZ")
                continue

            slide_left_X = pfm.gen_idx(X-1, Y, leading_zeros)
            slide_right_X = pfm.gen_idx(X+1, Y, leading_zeros)
            slide_up_Y = pfm.gen_idx(X, Y+1, leading_zeros)
            slide_down_Y = pfm.gen_idx(X, Y-1, leading_zeros)
            slide_left_down = pfm.gen_idx(X-1, Y-1, leading_zeros)
            slide_right_down = pfm.gen_idx(X+1, Y-1, leading_zeros)
            slide_right_up = pfm.gen_idx(X+1, Y+1, leading_zeros)
            slide_left_up = pfm.gen_idx(X-1, Y+1, leading_zeros)

            if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_left_X) +".json")) == True:
                if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_right_X) +".json")) == True:
                    if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_up_Y) +".json")) == True:
                        if pfm.get_path_manager().validate_file(os.path.join(pfm.get_collection_dir(), str(slide_down_Y) +".json")) == True:
                            valid_idx = True

        # Get the random pcpds's details
        idx = pcpds.get_cellID()
        print("Random IDX chosen:", str(idx))
        (dimX, dimY, dimZ) = pcpds.get_dimensions()
        bounds = pcpds.get_bounds()

        # Grab persistance diagram of random idx.
        test_pd = pcpds.get_persistance_diagram()

        # TODO: Change how Validation of these slid idx values is done?
        slide_left_X = pfm.get_pcpds(slide_left_X)
        slide_right_X = pfm.get_pcpds(slide_right_X)
        slide_up_Y = pfm.get_pcpds(slide_up_Y)
        slide_down_Y = pfm.get_pcpds(slide_down_Y)

        num_slides = 10
        num_directions = 4
        #results = [0]*(num_slides * num_partitions_to_slide)
        excel_sheet.write(0, n, str(idx))

        # Applies transform to point cloud and generates a persistence diagram to compare for bottleneck distances.
        print("num_slides * num_partitions_to_slide:",num_slides * num_partitions_to_slide)
        for overlay in range(1, num_slides * num_partitions_to_slide):

            # Left
            bounds_left_X = menu.transform(bounds, dimX, -1, True, overlay, num_slides)
            left_X_pcpds = menu.within_point_cloud(pcpds, slide_left_X, bounds_left_X)

            # Right
            bounds_right_X = menu.transform(bounds, dimX, 1, True, overlay, num_slides)
            right_X_pcpds = menu.within_point_cloud(pcpds, slide_right_X, bounds_right_X)

            # Up
            bounds_up_Y = menu.transform(bounds, dimY, 1, False, overlay, num_slides)
            up_Y_pcpds = menu.within_point_cloud(pcpds, slide_up_Y, bounds_up_Y)

            # Down
            bounds_down_Y = menu.transform(bounds, dimY, -1, False, overlay, num_slides)
            down_Y_pcpds = menu.within_point_cloud(pcpds, slide_down_Y, bounds_down_Y)

            overlay_avg = -1
            num_dir = 0
            sum = 0

            try:
                left_X_pcpds = filt_method(left_X_pcpds)
                left_X_pd = left_X_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(left_X_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR LEFT")
                right_bn = 0

            try:
                right_X_pcpds = filt_method(right_X_pcpds)
                right_X_pd = right_X_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(right_X_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR RIGHT")
                right_bn = 0

            try:
                up_Y_pcpds = filt_method(up_Y_pcpds)
                up_Y_pd = up_Y_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(up_Y_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR UP")
                up_bn = 0

            try:
                down_Y_pcpds = filt_method(down_Y_pcpds)
                down_Y_pd = down_Y_pcpds.get_persistance_diagram()
                sum = sum + bottleneck_distances.get_distances(down_Y_pd, test_pd)
                num_dir = num_dir + 1
            except:
                print("ERROR DOWN")
                down_bn = 0


            if (num_dir != 0):
                overlay_avg = sum / num_dir
            else:
                overlay_avg = -1
            excel_sheet.write(overlay, n, str(overlay_avg))

        menu.progress(n, number_of_data, ("Processing random grid: "+str(idx)+"..."))
    menu.progress(1, 1, ("Processing complete."))
    # Write results .xls file
    wb.save(dir_name + '.xls')
    print("Job done.")
Esempio n. 5
0
        else:
            valid = False
            print("\nNo persistance diagram present for files @ collection:",
                  pcpds_manager.get_path_manager().get_full_cur_dir() + ".\n")
            print(
                "Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection."
            )
    else:
        print("Problem loading pcpds file, it loaded as None.")

# Go through the pcpds objects in the dir & check that their filtration method is the same

iter = 0
filtration_name = None
files = file_manager.find_files(pcpds_manager.get_collection_dir(), '.json')
menu.progress(iter, 1, "Checking for filtration mismatches...")

for file in files:
    pcpds = file_manager.load(
        os.path.join(pcpds_manager.get_collection_dir(), file))

    if filtration_name is None:
        filtration_name = pcpds.get_filtration_used_name()

    if filtration_name in pcpds.get_filtration_used_name():
        pass
        #print("PCPDS:", pcpds.get_cellID(), " is Valid. Filtration:", filtration_name)
    else:
        print("INVALID PCPDS:", pcpds.get_cellID(), "Missmatched Filtration:",
              pcpds.get_filtration_used_name())
Esempio n. 6
0
            # Store results in other workbook
            for n in range(1, n_nearest):
                val = sheet.cell_value(n, 1)
                excel_sheet.write(n - 1, iter, val)

            # Check if the idx of the closest Bottleneck distance is the same as the one it was compared against:
            closest_idx = int(sheet.cell_value(1, 0))
            searched_idx = int(sheet.cell_value(1, 2))

            if closest_idx == searched_idx:
                excel_sheet.write(n_nearest - 1, iter, "yes")
            else:
                excel_sheet.write(n_nearest - 1, iter, "no")

            iter = iter + 1

            # Limit it to 255 since that is the max for excel files.
            if iter > 199:
                print(
                    "\nLimiting results folder to excel file capacity of 255 columns for results."
                )
                break
        except:
            print("\nERROR Invalid file:", file_name)
    menu.progress(iter, len(file_names), "Processed: " + file_name)

wb.save(os.path.join(pm.get_collection_dir(), 'compiled_results.xls'))
menu.progress(1, 1, "Finished compiling result data.\n")

# smaller_25 lower star results
Esempio n. 7
0
    def input_las(self, path):

        # Load data, put list of touples in an array
        in_file = File(self.filename + '.las', mode='r')

        # Import coordinates and change them to manipulative type float32
        x_vals = in_file.X
        y_vals = in_file.Y
        z_vals = in_file.Z

        coords, grid_dimensions = self.__format_data(x_vals,y_vals,z_vals)

        # Dictionary of point cloud coordinates
        points = {'idx':'coords[c]'}

        print("\nWould you like to use multi-processing to attempt to speed things up? [0] No. [1] Yes.")
        print("Please do note that using multiprocessing only speeds up this process with larger data sets.")
        multiproc = menu.get_int_input()

        # Start timer
        start_time = time.time()

        if multiproc:
            print("Multithreading")
            # split up the list by cpu cores avalible
            cores = multiprocessing.cpu_count()

            coords_split_amount = round(len(coords)/cores)
            #print("COORDS SPLIT AMOUNT:", coords_split_amount, "LEN(COORDS):", len(coords), " = CORES:", cores)

            chunks = [coords[x:x+coords_split_amount] for x in range(0, len(coords), coords_split_amount)]
            #print("CHUNKS:", len(chunks))

            # Sets up the manager to be able to return values properly to the points dict.
            manager = multiprocessing.Manager()
            points = manager.dict()

            # Sets up a pool of processes, one on each cpu by defualt.
            with concurrent.futures.ProcessPoolExecutor() as executor:
                # TODO: Implement menu.progress here?
                #executor.map(self.split_pointcloud, chunks, points)
                # print("Chunks len:", len(chunks))
                # # TODO: Instead of passing in points, generate them in the method & concatinate them together after passing them back?
                # for chunk, point in executor.map(self.split_pointcloud, chunks, points):
                #     print("CHUNK:", chunk)
                for chunk in chunks:
                    future = executor.submit(self.split_pointcloud, chunk, points)
                    # process = multiprocessing.Process(target=self.split_pointcloud, args=(chunk, points))
                    # process.start()
                    # process.join()
                    # process.terminate()
        else:
            print("Not multi threading.")
            self.split_pointcloud(coords, points, count=True)
            points.pop('idx')

        menu.progress(1, 1, ("Processing points completed."))
        print("\n")
        print("Processing points completed in: ", str(time.time() - start_time))

        # Creates a pcpds object for each idx and stores it's respective
        # point cloud in it before saving the file.
        tracker = 0

        # print("STATS:\nLength:",len(points), "\nPoints:",points)

        #pcpds_num = len(points)
        individual_dimensions = (grid_dimensions[0]/self.partition, grid_dimensions[1]/self.partition, grid_dimensions[2]/self.partition)

        for id in points:
            temp = pcpds(id, individual_dimensions)

            temp.set_point_cloud(points[id])

            # Generates and sets the persistance diagram
            # temp = Filtration.get_rips_diagram(temp)

            # print('diagram set')
            file_manager.save(temp, path, id)

            # Keeps track of the PCPDS objects being generated
            menu.progress(tracker, len(points), ("Processing PCPDS object for idx: "+str(id)))
            tracker = tracker + 1

        menu.progress(1, 1, ("Processing PCPDS files completed."))
        print("\n")
Esempio n. 8
0
def main():

    pfm = PCPDS_Manager()
    number_of_data = 400

    print("Please enter a collection that has already been filtered:")
    #TODO: list collections
    # Loop here for valid directory
    collection = menu.get_input("Directory: ")

    pfm.get_path_manager().set_cur_dir(collection)

    valid = pfm.get_collection_dir()

    # If not a valid directory, ask again saying it is invalid
    while (not valid):
        if not pfm.get_collection_dir():
            print("Invalid collection name:",
                  pfm.get_path_manager().get_cur_dir(), "try again.")
        collection = menu.get_input("Directory: ")
        pfm.get_path_manager().set_cur_dir(collection)
        valid = pfm.get_collection_dir()

        # Checks the first pcpds object in this directory for if it has a persistance diagram
        pcpds_temp = None
        for file in os.listdir(
                pfm.get_path_manager().get_full_cur_dir_var(collection)):
            file_path = os.path.join(pfm.get_path_manager().get_full_cur_dir(),
                                     file)
            pcpds_temp = file_manager.load(file_path)
            break
        if pcpds_temp is not None:
            if pcpds_temp.get_persistance_diagram() is not None:
                print("Valid Directory Chosen:", valid)
                break
            else:
                valid = False
                print(
                    "\nNo persistance diagram present for files @ collection:",
                    pfm.get_path_manager().get_full_cur_dir() + ".\n")
                print(
                    "Please Either enter a directory that has been filtrated for persistance diagrams or run 'generate_persistance_diagrams.py' on the collection."
                )
        else:
            print("Problem loading pcpds file, it loaded as None.")

    cur_dir = pfm.get_path_manager().get_full_cur_dir()

    wb = Workbook()
    excel_sheet = wb.add_sheet('Sheet 1')

    for n in range(number_of_data):

        # Find random valid index with valid slide pcpds
        test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]

        valid_idx = False
        while valid_idx == False:

            # Find valid center pcpds
            test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]
            while pfm.get_path_manager().validate_file(
                    os.path.join(cur_dir, test_idx + ".json")) == False:
                test_idx = file_manager.get_random_file(cur_dir, '.json')[:-5]

            test_pcpds = pfm.get_random_pcpds(test_idx)
            (X, Y, Z) = test_pcpds.get_xyz(str(test_idx))

            # Find valid slide directional pcpds objects
            slide_left_X = las_obj.find_index(X - 1, Y)
            slide_right_X = las_obj.find_index(X + 1, Y)
            slide_up_Y = las_obj.find_index(X, Y + 1)
            slide_down_Y = las_obj.find_index(X, Y - 1)

            if pfm.get_path_manager().validate_file(
                    os.path.join(dir_name,
                                 str(slide_left_X) + ".json")) == True:
                if pfm.get_path_manager().validate_file(
                        os.path.join(dir_name,
                                     str(slide_right_X) + ".json")) == True:
                    if pfm.get_path_manager().validate_file(
                            os.path.join(dir_name,
                                         str(slide_up_Y) + ".json")) == True:
                        if pfm.get_path_manager().validate_file(
                                os.path.join(dir_name,
                                             str(slide_down_Y) +
                                             ".json")) == True:
                            valid_idx = True
                            print("VALID RANDOM ID: ", test_idx)

        # Get the random pcpds's details
        print('COORDINATES: ' + 'X:' + str(X) + ' Y:' + str(Y) + ' Z:' +
              str(Z))
        (dimX, dimY, dimZ) = test_pcpds.get_dimensions()
        bounds = test_pcpds.get_bounds(str(test_idx))
        test_pcpds = filtration.get_rips_diagram(test_pcpds)
        test_pd = test_pcpds.get_persistance_diagram()

        results = [0] * 11
        num_dir = 4

        slide_left_X = pfm.get_pcpds(slide_left_X)
        slide_right_X = pfm.get_pcpds(slide_right_X)
        slide_up_Y = pfm.get_pcpds(slide_up_Y)
        slide_down_Y = pfm.get_pcpds(slide_down_Y)

        # Slide frame 10% across each direction
        for overlay in range(1, 10):

            # Left
            bounds_left_X = menu.transform(bounds, dimX, -1, True, overlay)
            left_X_pcpds = menu.within_point_cloud(test_pcpds, slide_left_X,
                                                   bounds_left_X)
            left_X_pcpds = filtration.get_rips_diagram(left_X_pcpds)
            left_X_pd = left_X_pcpds.get_persistance_diagram()

            # Right
            bounds_right_X = menu.transform(bounds, dimX, 1, True, overlay)
            right_X_pcpds = menu.within_point_cloud(test_pcpds, slide_right_X,
                                                    bounds_right_X)
            right_X_pcpds = filtration.get_rips_diagram(right_X_pcpds)
            right_X_pd = right_X_pcpds.get_persistance_diagram()

            # Up
            bounds_up_Y = menu.transform(bounds, dimY, 1, False, overlay)
            up_Y_pcpds = menu.within_point_cloud(test_pcpds, slide_up_Y,
                                                 bounds_up_Y)
            up_Y_pcpds = filtration.get_rips_diagram(up_Y_pcpds)
            up_Y_pd = up_Y_pcpds.get_persistance_diagram()

            # Down
            bounds_down_Y = menu.transform(bounds, dimY, -1, False, overlay)
            down_Y_pcpds = menu.within_point_cloud(test_pcpds, slide_down_Y,
                                                   bounds_down_Y)
            down_Y_pcpds = filtration.get_rips_diagram(down_Y_pcpds)
            down_Y_pd = down_Y_pcpds.get_persistance_diagram()

            # Find average bottleneck at each overlay percentage
            results[overlay - 1] = bottleneck_distances.get_distances(
                left_X_pd, test_pd)
            results[overlay -
                    1] = results[overlay] + bottleneck_distances.get_distances(
                        right_X_pd, test_pd)
            results[overlay -
                    1] = results[overlay] + bottleneck_distances.get_distances(
                        up_Y_pd, test_pd)
            results[overlay - 1] = (results[overlay] +
                                    bottleneck_distances.get_distances(
                                        down_Y_pd, test_pd)) / num_dir

        # Write results .xls file
        num = 1
        excel_sheet.write(n, 0, str(test_idx))
        for overlay_avg in results:
            excel_sheet.write(n, num, str(overlay_avg))
            num = num + 1
        wb.save(dir_name + '.xls')

        menu.progress(n, number_of_data,
                      ("Processing random grid: " + str(test_idx) + "..."))

    print("Job done.")