class Filter(object):
    '''
    classdocs
    '''


    def __init__(self):
        '''
        Constructor
        :type self:
        '''
        # Start the DatasetBuilder
        #-------------------------
        # Configurations file xml of the dataset builder
        configFileDatasetBuilder = os.path.join('DatasetBuilder','Configurations','Configurations.xml')
               
        # The serialization file to save the dataset
        datasetSerializationFile = os.path.join('DatasetBuilder','Output', 'dataset.bin')
               
        # The XLSX file name for train set
        xlsxTrainFileName = os.path.join('DatasetBuilder','Input','train')
        
        
        # Initialize the DatasetBuilder from serialization file
        datasetBuilder = DatasetBuilder(configFileDatasetBuilder, [], datasetSerializationFile)
        
        datasetBuilder.trainSet = datasetBuilder.GetDatasetFromXLSXFile(xlsxTrainFileName)
                
        
        # Configurations file xml of the language model
        configFileLanguageModel_lexicon = os.path.join('LanguageModel', 'Configurations', 'Configurations-lexicon.xml')
        configFileLanguageModel_Tasi = os.path.join('LanguageModel', 'Configurations', 'Configurations-Tasi.xml')
        stopWordsFileName = os.path.join('LanguageModel', 'Input', 'stop_words.txt')
        linksDBFile = os.path.join('LanguageModel', 'Output', 'links_database.txt')
        # The serialization file to save the model
        languageModelSerializationFile = os.path.join('LanguageModel', 'Output', 'language_model.bin')
        
        # Start the LanguageModel:
        
        # Initialize the LanguageModel_Lexicon
        self.languageModel_lexicon = LanguageModel(configFileLanguageModel_lexicon, stopWordsFileName, languageModelSerializationFile, linksDBFile, datasetBuilder.trainSet)
        self.languageModel_lexicon.BuildLanguageModel()

         # Initialize the LanguageModel_Tasi
        self.languageModel_Tasi = LanguageModel(configFileLanguageModel_Tasi, stopWordsFileName, languageModelSerializationFile, linksDBFile, datasetBuilder.trainSet)
        self.languageModel_Tasi.BuildLanguageModel()
        
        # Configurations file xml of the features extractor
        configFileFeaturesExtractor_Lexicon = os.path.join('FeaturesExtractor', 'Configurations', 'Configurations-lexicon.xml')
        configFileFeaturesExtractor_Tasi = os.path.join('FeaturesExtractor', 'Configurations', 'Configurations-Tasi.xml')
        # The serialization file to save the features
        trainFeaturesSerializationFile = os.path.join('FeaturesExtractor', 'Output', 'train_features.bin')
        trainLabelsSerializationFile = os.path.join('FeaturesExtractor', 'Output', 'train_labels.bin')
        
        # Start the FeaturesExtractor:
        #-----------------------------    
        # Initialize the FeaturesExtractor _ Lexicon
        trainFeaturesExtractor_Lexicon = FeaturesExtractor(configFileFeaturesExtractor_Lexicon, trainFeaturesSerializationFile, trainLabelsSerializationFile, self.languageModel_lexicon, datasetBuilder.trainSet)
        trainFeaturesExtractor_Lexicon.ExtractNumTfFeatures()

        # Initialize the FeaturesExtractor _ Tasi
        trainFeaturesExtractor_Tasi = FeaturesExtractor(configFileFeaturesExtractor_Tasi, trainFeaturesSerializationFile, trainLabelsSerializationFile, self.languageModel_Tasi, datasetBuilder.trainSet)
        trainFeaturesExtractor_Tasi.ExtractNumTfFeatures()

        # The serialization file to save the features
        configFileClassifier_Lexicon = os.path.join('Classifier', 'Configurations', 'Configurations-lexicon.xml')
        configFileClassifier_Tasi = os.path.join('Classifier', 'Configurations', 'Configurations-Tasi.xml')
        modelSerializationFile = os.path.join('Classifier', 'Output', 'classifier_model.bin')
    
        # Start the Classifier:
        #---------------------
        print(trainFeaturesExtractor_Tasi.labels[:4])
        print([i['label'] for i in trainFeaturesExtractor_Lexicon.dataSet[:4]])
        self.classifier_Lexicon = Classifier(configFileClassifier_Lexicon, modelSerializationFile,  trainFeaturesExtractor_Lexicon.features, trainFeaturesExtractor_Lexicon.labels, [], [])
        self.classifier_Tasi = Classifier(configFileClassifier_Tasi, modelSerializationFile, trainFeaturesExtractor_Tasi.features,
                        trainFeaturesExtractor_Tasi.labels, [],[])
        
        # Train
        self.classifier_Lexicon.Train()
        self.classifier_Tasi.Train()
        
    def Classify(self, text, stockName):
	
        testSet = []
        for t in text:
            testSet.append({'label' : '', 'text' : t})

        if stockName == 'Tasi':
            # Configurations file xml of the features extractor
            configFileFeaturesExtractor = os.path.join('FeaturesExtractor', 'Configurations', 'Configurations-Tasi.xml')
            testFeaturesExtractor = FeaturesExtractor(configFileFeaturesExtractor, None, None, self.languageModel_Tasi, testSet)
            testFeaturesExtractor.ExtractNumTfFeatures()
            self.classifier_Tasi.testFeatures = testFeaturesExtractor.features
            self.classifier_Tasi.testTargets = []
            for i in range(len(self.classifier_Tasi.testFeatures)):		
            	#self.classifier_Tasi.testTargets[i] = 1
                self.classifier_Tasi.testTargets.append(1)
            label, acc, val = self.classifier_Tasi.Test()
        else:
            configFileFeaturesExtractor = os.path.join('FeaturesExtractor', 'Configurations', 'Configurations-lexicon.xml')
            testFeaturesExtractor = FeaturesExtractor(configFileFeaturesExtractor, None, None, self.languageModel_lexicon, testSet)
            self.classifier_Lexicon.testFeatures = testFeaturesExtractor.features
            self.classifier_Lexicon.testTargets = []
            for i in range(len(self.classifier_Lexicon.testFeatures)):		
                self.classifier_Lexicon.testTargets[i] = 1
            label, acc, val = self.classifier_Lexicon.Test()

        
        return label
    if DUMP_FEATURES:
        trainFeaturesExtractor.DumpFeaturesToTxt(trainExportFileName)
        testFeaturesExtractor.DumpFeaturesToTxt(testExportFileName)
if (CLASSIFIER):
    # The serialization file to save the features
    modelSerializationFile = ".\\Classifier\\Output\classifier_model.bin"

    # Start the Classifier:
    #---------------------
    if (SVM_CLASSIFIER):
        classifier = Classifier(modelSerializationFile, 'SVM',
                                trainFeaturesExtractor.features,
                                trainFeaturesExtractor.labels,
                                testFeaturesExtractor.features,
                                testFeaturesExtractor.labels)

        if not LOAD_MODEL:
            # Train
            classifier.Train()
            classifier.SaveModel()
        else:
            classifier.LoadModel()
        # Test
        labels, acc, val = classifier.Test()

        # Build the confusion matrix
        mConfusionMatrix, mNormalConfusionMatrix, vNumTrainExamplesPerClass, vAccuracyPerClass, nOverallAccuracy = classifier.BuildConfusionMatrix(
            testFeaturesExtractor.labels, labels)
        print(mConfusionMatrix)
class Filter(object):
    '''
    classdocs
    '''
    def __init__(self, basePath, stockName, Retrain):
        '''
        Constructor
        :type self:
        '''

        if (basePath == None):
            self.basePath = self.basePath
        else:
            self.basePath = basePath

        self.stockName = stockName
        serializationFile = open(
            os.path.join(self.basePath, 'StockToClassifier.bin'), 'rb')
        self.StockToClassifier = pickle.load(serializationFile)
        #import pdb; pdb.set_trace()
        self.usedClassifier = self.StockToClassifier[self.stockName]
        # Start the DatasetBuilder
        #-------------------------
        # Configurations file xml of the dataset builder
        configFileDatasetBuilder = os.path.join(self.basePath,
                                                "DatasetBuilder",
                                                "Configurations",
                                                "Configurations.xml")

        # The serialization file to save the dataset
        datasetSerializationFile = os.path.join(self.basePath,
                                                "DatasetBuilder", "Output",
                                                "dataset.bin")

        if Retrain == False:
            # The XLSX file name for train set
            xlsxTrainFileName = os.path.join(self.basePath, "DatasetBuilder",
                                             "Input", "train")

            # Initialize the DatasetBuilder from serialization file
            datasetBuilder = DatasetBuilder(configFileDatasetBuilder, [],
                                            datasetSerializationFile)

            datasetBuilder.trainSet = datasetBuilder.GetDatasetFromXLSXFile(
                xlsxTrainFileName)

            self.RunLanguageModel(self.usedClassifier, datasetBuilder.trainSet)

            trainFeaturesExtractor = self.RunFeatureExtractor(
                self.usedClassifier, datasetBuilder.trainSet)
            self.Train(self.usedClassifier, trainFeaturesExtractor, True)
        else:
            # Initialize the DatasetBuilder from serialization file
            datasetBuilder = DatasetBuilder(configFileDatasetBuilder, [],
                                            datasetSerializationFile)

    def Classify(self, text):

        testSet = []
        for t in text:
            testSet.append({'label': '', 'text': t})

        # Configurations file xml of the features extractor
        configFileFeaturesExtractor = os.path.join(
            self.basePath, "FeaturesExtractor", "Configurations",
            "Configurations-" + self.usedClassifier + ".xml")
        testFeaturesExtractor = FeaturesExtractor(configFileFeaturesExtractor,
                                                  None, None,
                                                  self.languageModel, testSet)
        if self.usedClassifier == "Lexicon":
            testFeaturesExtractor.ExtractLexiconFeatures()
        else:
            testFeaturesExtractor.ExtractNumTfFeatures()
        self.classifier.testFeatures = testFeaturesExtractor.features
        self.classifier.testTargets = []
        for i in range(len(self.classifier.testFeatures)):
            self.classifier.testTargets.append(1)
        label, acc, val = self.classifier.Test()

        return label

    def RunLanguageModel(self, _Classifier, trainSet):
        # Configurations file xml of the language model
        configFileLanguageModel = os.path.join(
            self.basePath, "LanguageModel", "Configurations",
            "Configurations-" + _Classifier + ".xml")
        stopWordsFileName = os.path.join(self.basePath, "LanguageModel",
                                         "Input", "stop_words.txt")
        linksDBFile = os.path.join(self.basePath, "LanguageModel", "Output",
                                   "links_database.txt")
        # The serialization file to save the model
        languageModelSerializationFile = os.path.join(self.basePath,
                                                      "LanguageModel",
                                                      "Output",
                                                      "language_model.bin")
        if _Classifier == "Lexicon":
            langModelTxtLoadFile = os.path.join(
                self.basePath, "LanguageModel", "Input",
                "language_model_lexicon_synonyms.txt")

        # Start the LanguageModel:

        # Initialize the LanguageModel_Lexicon
        self.languageModel = LanguageModel(configFileLanguageModel,
                                           stopWordsFileName,
                                           languageModelSerializationFile,
                                           linksDBFile, trainSet)
        self.languageModel.BuildLanguageModel()
        if _Classifier == "Lexicon":
            self.languageModel.LoadModelFromTxtFile(langModelTxtLoadFile)

    def RunFeatureExtractor(self, _Classifier, trainSet):
        # Configurations file xml of the features extractor
        configFileFeaturesExtractor = os.path.join(
            self.basePath, "FeaturesExtractor", "Configurations",
            "Configurations-" + _Classifier + ".xml")
        # The serialization file to save the features
        trainFeaturesSerializationFile = os.path.join(self.basePath,
                                                      "FeaturesExtractor",
                                                      "Output",
                                                      "train_features.bin")
        trainLabelsSerializationFile = os.path.join(self.basePath,
                                                    "FeaturesExtractor",
                                                    "Output",
                                                    "train_labels.bin")

        # Start the FeaturesExtractor:
        #-----------------------------
        # Initialize the FeaturesExtractor
        trainFeaturesExtractor = FeaturesExtractor(
            configFileFeaturesExtractor, trainFeaturesSerializationFile,
            trainLabelsSerializationFile, self.languageModel, trainSet)
        if _Classifier == "Lexicon":
            trainFeaturesExtractor.ExtractLexiconFeatures()
        else:
            trainFeaturesExtractor.ExtractNumTfFeatures()
        return trainFeaturesExtractor

    def Train(self, _Classifier, trainFeaturesExtractor, Full):
        # The serialization file to save the features
        configFileClassifier = os.path.join(
            self.basePath, "Classifier", "Configurations",
            "Configurations-" + _Classifier + ".xml")
        modelSerializationFile = os.path.join(self.basePath, "Classifier",
                                              "Output", "classifier_model.bin")

        # Start the Classifier:
        #---------------------

        self.classifier = Classifier(configFileClassifier,
                                     modelSerializationFile,
                                     trainFeaturesExtractor.features,
                                     trainFeaturesExtractor.labels, [], [])

        if Full == True:
            self.classifier.Train()

    def GetBestClassifier(self, trainSet):
        #import pdb; pdb.set_trace()
        self.RunLanguageModel("Lexicon", trainSet)
        trainFeaturesExtractor = self.RunFeatureExtractor("Lexicon", trainSet)
        self.Train("Lexicon", trainFeaturesExtractor, False)
        LexiconAcc = self.classifier.getCrossValidationAccuarcy()

        self.RunLanguageModel("DT", trainSet)
        trainFeaturesExtractor = self.RunFeatureExtractor("DT", trainSet)
        self.Train("DT", trainFeaturesExtractor, False)
        DTAcc = self.classifier.getCrossValidationAccuarcy()

        self.RunLanguageModel("SVM", trainSet)
        trainFeaturesExtractor = self.RunFeatureExtractor("SVM", trainSet)
        self.Train("SVM", trainFeaturesExtractor, False)
        SVMAcc = self.classifier.getCrossValidationAccuarcy()
        bestClassifier = max(LexiconAcc, DTAcc, SVMAcc)
        if bestClassifier == LexiconAcc:
            self.StockToClassifier[self.stockName] = "Lexicon"
        elif bestClassifier == DTAcc:
            self.StockToClassifier[self.stockName] = "DT"
        else:
            self.StockToClassifier[self.stockName] = "SVM"