Esempio n. 1
0
def convert_files(filenames, extension = None, path = None, processes = None, verbose = False):
  """Transforms list of files to their sink format in parallel.
  
  Arguments
  ---------
  filenames : list of str
    The filenames to convert
  extension : str
    The new file format extension.
  path : str or None
    Optional path speicfication.
  processes : int, 'serial' or None
    The number of processes to use for parallel conversion.
  verbose : bool
    If True, print progress information.
  
  Returns
  -------
  filenames : list of str
    The new file names.
  """      
  if not isinstance(filenames, (tuple, list)):
    filenames = [filenames];
  if len(filenames) == 0:
    return [];
  n_files = len(filenames); 
  
  if path is not None:
    filenames = [fu.join(path, fu.split(f)[1]) for f in filenames]; 
  sinks = ['.'.join(f.split('.')[:-1] + [extension]) for f in filenames];
  
  if verbose:
    timer = tmr.Timer()
    print('Converting %d files to %s!' % (n_files, extension));
  
  if not isinstance(processes, int) and processes != 'serial':
    processes = mp.cpu_count();
  
  #print(n_files, extension, filenames, sinks)
  _convert = functools.partial(_convert_files, n_files=n_files, extension=extension, verbose=verbose);
  
  if processes == 'serial':
    [_convert(source,sink,i) for i,source,sink in zip(range(n_files), filenames, sinks)];
  else:
    with concurrent.futures.ProcessPoolExecutor(processes) as executor:
      executor.map(_convert, filenames, sinks, range(n_files));
                  
  if verbose:
    timer.print_elapsed_time('Converting %d files to %s' % (n_files, extension));
  
  return sinks;
Esempio n. 2
0
def initialize_lookup_table(function=match_index, filename=filename):
    """Initialize the lookup table"""

    filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            filename)

    #check if only compressed file exists
    fu.uncompress(filename)

    if os.path.exists(filename):
        return np.load(filename)
    else:
        lut = generate_lookup_table(function=function)
        np.save(filename, lut)
        return lut
Esempio n. 3
0
def initializeStitcher(path = None):
    """Initialize settings for the TeraStitcher

    Arguments:
        path (str or None): path to TeraStitcher root directory, if None 
        :const:`ClearMap.Settings.TeraStitcherPath` is used.
        
    See also:
        :const:`TeraStitcherBinary`,
        :const:`Initialized`
    """
    
    global TeraStitcherBinary, Initialized
    
    if path is None:
        path = settings.TeraStitcherPath;
    
    #search for elastix binary
    terasticherbin = os.path.join(path, 'bin/terastitcher');
    if os.path.exists(terasticherbin):
        TeraStitcherBinary = terasticherbin;
    else:
        raise RuntimeError("Cannot find TeraSticher binary %s, set path in Settings.py accordingly!" % terasticherbin);
    
    # add the global optimization script folder 
    if not fileutils.isFile(os.path.join(path, 'LQP_HE.py')):
      print('Warning: the global optimization file %s for TeraStitcher cannot be found in %s' % ('LQP_HE.py', path));
    os.environ["__LQP_PATH__"] = path;
    
    
    Initialized = True;
    
    print "TeraSticher sucessfully initialized from path: %s" % path;
    
    return path;
Esempio n. 4
0
def initialize_lookup_table(function = index_to_smoothing, filename = smooth_by_configuration_filename, verbose = True, processes = None):
  """Initialize the lookup table"""
  
  filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), filename);
  
  #uncompress if only zip file exists.
  fu.uncompress(filename);
  
  #load lookup table
  if os.path.exists(filename):
    if verbose:
      print('Smoothing: Loading look-up table from %s!' % filename)
    return np.load(filename);
  else:
    if verbose:
      print('Smoothing: Look-up table does not exists! Pre-calculating it!')
    lut = generate_lookup_table(function = function, verbose=verbose, processes=processes);
    np.save(filename, lut);
    return lut;
Esempio n. 5
0
def is_memmap(source):
    if isinstance(source, (np.memmap, Source)):
        return True
    elif isinstance(source, str):
        if fu.is_file(source):
            try:
                memmap = np.memmap(source)
                #analysis:ignore
            except:
                return False
        return True
    else:
        return False
Esempio n. 6
0
def _file_list(expression=None, file_list=None, sort=True, verbose=False):
    """Returns the list of files that match the tag expression.
  
  Arguments
  ---------
  expression :str
    The regular expression the file names should match.
  sort : bool
    If True, sort files naturally.
  verbose : bool
    If True, print warning if no files exists.
  
  Returns
  -------
  file_list : list of str
    The list of files that matched the expression.
  """
    if isinstance(file_list, list):
        return file_list

    if isinstance(expression, te.Expression):
        fl = glob.glob(expression.glob())
    elif fu.is_directory(expression):
        expression = fu.join(expression, '*')
        fl = glob.glob(expression)
    else:
        e = te.Expression(expression)
        fl = glob.glob(e.glob())

    if verbose and len(fl) == 0:
        warnings.warn('No files found matching %s !' % expression)
        return []

    if sort:
        fl = natsort.natsorted(fl)

    return fl
Esempio n. 7
0
def _expression_and_file_list(expression=None, file_list=None):
    if isinstance(expression, te.Expression) or expression is None:
        pass
    elif fu.is_directory(expression):
        if file_list is None:
            file_list = glob.glob(fu.join(expression, '*'))
        expression = te.detect(file_list)
    elif isinstance(expression, (str, list)):
        expression = te.Expression(expression)
    else:
        raise ValueError('Expression %r is not valid!' % expression)

    if file_list is None:
        if expression is None:
            raise ValueError(
                'Either expression or file_list need to be specified!')
        file_list = glob.glob(expression.glob())
    elif isinstance(file_list, list):
        if expression is None:
            expression = te.detect(file_list)
    else:
        raise ValueError('The file_list %r is not value!' % file_list)

    return expression, file_list
Esempio n. 8
0
def _expression_or_file_list(expression=None, file_list=None):
    if isinstance(expression, te.Expression) or expression is None:
        pass
    elif fu.is_directory(expression):
        file_list = _file_list(expression=expression, sort=True)
        expression = None
    elif isinstance(expression, str):
        expression = te.Expression(expression)
    else:
        raise ValueError('The expression %r is not valid!' % expression)

    if file_list is not None and not isinstance(file_list, list):
        raise ValueError('The file_list %r is not a list or None!' % file_list)

    if expression is None and file_list is None:
        raise ValueError('Expresson and file_list cannot both be None!')

    return expression, file_list
Esempio n. 9
0
def filename_to_module(filename):
  """Returns the IO module associated with a filename.
  
  Arguments
  ---------
  filename : str
    The file name.
      
  Returns
  -------
  module : module
    The module that handles the IO of the file.
  """       
  ext = fu.file_extension(filename);
  
  mod = file_extension_to_module.get(ext, None);
  if mod is None:
    raise ValueError("Cannot determine module for file %s with extension %s!" % (filename, ext));

  return mod;    
Esempio n. 10
0
 def exists(self):
   if self.location is not None:
     return fu.is_file(self.location);
   else:
     return False;
Esempio n. 11
0
###############################################################################

#TODO: move to settings ?
atlas_path = os.path.join(settings.resources_path, 'Atlas')
"""Default path to atlas infomration.
"""

default_annotation_file = os.path.join(atlas_path, 'ABA_25um_annotation.tif')
"""Default volumetric annotated image file.

Note
----
  This file is by default the Allen brain annotated mouse atlas with 25um 
  isotropic resolution.
"""
fu.uncompress(default_annotation_file)

default_reference_file = os.path.join(atlas_path, 'ABA_25um_reference.tif')
"""Default volumetric annotated image file.

Note
----
  This file is by default the Allen brain annotated mouse atlas with 25um 
  isotropic resolution.
"""
fu.uncompress(default_reference_file)

default_distance_to_surface_file = os.path.join(
    atlas_path, 'ABA_25um_distance_to_surface.tif')
"""Default volumetric annotated image file.
Esempio n. 12
0
def write(filename,
          data,
          slicing=None,
          blocks=None,
          processes=None,
          verbose=False):
    """Write a large array to disk in parallel.
  
  Arguments
  ---------
  filename : str
    Filename of array to load.
  data : array
    Array to save to disk.
  blocks : int or None
    Number of blocks to split array into for parallel processing.
  processes : None or int
    Number of processes, if None use number of cpus.
  verbose : bool
    Print info about the file to be loaded.
    
  Returns
  -------
  filename : str 
      The filename of the numpy array on disk.
  """
    if processes is None:
        processes = mp.cpu_count()
    if blocks is None:
        blocks = processes * default_blocks_per_process

    #data
    data = io.as_source(data)

    #prepare sink
    is_file = fu.is_file(filename)
    if slicing is not None and not is_file:
        raise ValueError('Cannot write to a slice to a non-existing file %s!' %
                         filename)

    if slicing is None:
        #create file on disk via memmap
        fortran_order = 'F' == data.order
        memmap = np.lib.format.open_memmap(filename,
                                           mode='w+',
                                           shape=data.shape,
                                           dtype=data.dtype,
                                           fortran_order=fortran_order)
        memmap.flush()
        del (memmap)

    sink = mmp.Source(location=filename)
    if slicing is not None:
        sink = slc.Slice(source=sink, slicing=slicing)
    shape, dtype, order, offset = sink.shape, sink.dtype, sink.order, sink.offset

    if (data.order != order):
        raise RuntimeError('Order of arrays do not match %r!=%r' %
                           (data.order, order))
    if order not in ['C', 'F']:
        raise NotImplementedError(
            'Cannot read in parallel from non-contigous source!')
        #TODO: implement parallel reader with strides !

    if verbose:
        timer = tmr.Timer()
        print(
            'Writing data to sink of shape = %r, dtype = %r, order = %r, offset = %r'
            % (shape, dtype, order, offset))

    d = data.reshape(-1, order='A')
    if d.dtype == bool:
        d = d.view('uint8')

    code.write(data=d,
               filename=filename,
               offset=offset,
               blocks=blocks,
               processes=processes)

    if verbose:
        timer.print_elapsed_time(head='Writing data to %s' % filename)

    return filename
Esempio n. 13
0
def is_file_list(expression,
                 exists=False,
                 tag_names=None,
                 n_tags=-1,
                 verbose=False):
    """Checks if the expression is a valid file list.
  
  Arguments
  ---------
  expression : str
    The regular expression to check.
  exists : bool
    If True, check if at least one file exists.
  tag_names :  list of str or None
    List of tag names expected to be present in the expression.
  n_Tags : int or None
    Number of tags to expect.
  verbose : bool
    If True, print reason why the epxression does not represent the desired file list.
    
  Returns
  -------
  is_expression : bool
    Returns True if the expression fullfills the desired criteria and at least one file matching the expression exists.
  """
    if isinstance(expression, Source):
        return True

    if not isinstance(expression, (str, te.Expression)):
        if verbose:
            warnings.warn(
                'The expression %r is not a string or valid Source!' %
                expression)
        return False

    if fu.is_directory(expression):
        if exists:
            if len(os.listdir(expression)) == 0:
                if verbose:
                    warnings.warn('No files exists in the directory %s!' %
                                  expression)
                return False
            else:
                return True
        else:
            return True

    if tag_names is not None or n_tags is not None:
        t = te.Expression(expression) if not isinstance(
            expression, te.Expression) else expression
        if n_tags is not None:
            if n_tags < 0 and -n_tags > t.ntags():
                if verbose:
                    warnings.warn(
                        'Expression has not required number %d of tags, but %d!'
                        % (n_tags, t.ntags()))
                return False
            elif n_tags >= 0 and n_tags != t.ntags():
                if verbose:
                    warnings.warn(
                        'Expression has not required number %d of tags, but %d!'
                        % (n_tags, t.ntags()))
                return False

        if tag_names is not None:
            if tag_names != t.tag_names():
                if verbose:
                    warnings.warn(
                        'Expression has not required tags %r, but %r!' %
                        (tag_names, t.tag_names()))
                return False

    if exists:
        f = _first_file(expression)
        if f is None:
            if verbose:
                warnings.warn('Expression does not point to any files!')
            return False

    return True
Esempio n. 14
0
    def __setitem__(self, slicing, data, processes=None):
        e = self.expression

        shape = self.shape
        ndim = self.ndim
        ndim_list = e.ntags()

        slicing = slc.unpack_slicing(slicing, ndim)

        slicing_file = slicing[:-ndim_list]
        slicing_list = slicing[-ndim_list:]

        shape_list = shape[-ndim_list:]

        #start indices
        indices_start = self.expression.indices(self.file_list[0])
        #TODO: steps in file list

        #genereate file list to read
        #Note: indices increase according to the axes order but thier own order is in tag order
        indices = []
        for sl, s, i in zip(slicing_list, shape_list, indices_start):
            if isinstance(sl, slice):
                slice_indices = sl.indices(s)
                slice_indices = (slice_indices[0] + i, slice_indices[1] + i,
                                 slice_indices[2])
                indices.append(range(*slice_indices))
            elif isinstance(sl, (list, np.ndarray)):
                indices.append(np.array(sl) + i)
            elif isinstance(sl, numbers.Integral):
                indices.append([sl + i])
            else:
                raise IndexError('Invalid slice specification %r!' % sl)
        indices.reverse()
        indices = itertools.product(*indices)
        indices = [i[::-1] for i in indices]

        axes_to_tags = self.axes_to_tag_order()
        if len(axes_to_tags) > 1 and axes_to_tags != list(
                range(len(axes_to_tags))):
            indices = [tuple(i[j] for j in axes_to_tags) for i in indices]

        fl = [e.string_from_index(i) for i in indices]
        #print indices, fl

        #create directory if it does not exists
        #Note: move this to func if files need to be distributed accross several directories
        fu.create_directory(fl[0], split=True)

        if processes is None:
            processes = mp.cpu_count()

        @ptb.parallel_traceback
        def func(filename, index, data=data, slicing=slicing_file):
            index = (Ellipsis, ) + index
            io.write(sink=filename,
                     data=data[index],
                     slicing=slicing,
                     processes='serial')

        if processes == 'serial':
            for f, i in zip(fl, indices):
                func(f, i)
        else:
            with concurrent.futures.ThreadPoolExecutor(processes) as executor:
                executor.map(func, fl, indices)
Esempio n. 15
0
def _memmap(location=None,
            shape=None,
            dtype=None,
            order=None,
            mode=None,
            array=None):
    """Create a memory map.
  
  Arguments
  ---------
  location : str
    The filename of the memory mapped array.
  shape : tuple or None
    The shape of the memory map to create.
  dtype : dtype 
    The data type of the memory map.
  order : 'C', 'F', or None
    The contiguous order of the memmap.
  mode : 'r', 'w', 'w+', None
    The mode to open the memory map.
  array : array, Source or None
    Optional source with data to fill the memory map with.
    
  Returns
  -------
  memmap : np.memmap
    The memory map.
    
  Note
  ----
  By default memmaps are initialized as fortran contiguous if order is None.
  """
    #print location, shape, dtype, order, mode, array
    if isinstance(location, np.memmap):
        array = location
        location = None

    if array is None:
        if not isinstance(location, str):
            raise ValueError('Cannot create memmap without a location!')

        if mode != 'w+' and fu.is_file(location):
            array = np.lib.format.open_memmap(location)

    if array is None:
        if shape is None:
            raise ValueError(
                'Cannot create memmap without shape at location %r!' %
                location)

        mode = 'w+' if mode is None else mode
        fortran = order in ['F', None]
        #default is 'F' for memmaps

        memmap = np.lib.format.open_memmap(location,
                                           mode=mode,
                                           shape=shape,
                                           dtype=dtype,
                                           fortran_order=fortran)

    elif isinstance(array, np.memmap):
        location = location if location is not None else array.filename
        location = fu.abspath(location)

        shape = shape if shape is not None else array.shape
        dtype = dtype if dtype is not None else array.dtype
        order = order if order is not None else npy.order(array)

        #if shape != array.shape:
        #  raise ValueError('Shape %r and array shape %r mismatch!' % (shape, array.shape));

        if shape != array.shape or dtype != array.dtype or order != npy.order(
                array) or location != fu.abspath(array.filename):
            fortran = order in ['F', None]
            #default is 'F' for memmaps
            memmap = np.lib.format.open_memmap(location,
                                               mode='w+',
                                               shape=shape,
                                               dtype=dtype,
                                               fortran_order=fortran)
            if shape == array.shape:
                memmap[:] = array
        else:
            memmap = array

        if mode is None:
            mode = 'r+'
        if mode != memmap.mode:
            memmap = np.lib.format.open_memmap(location, mode=mode)

    elif isinstance(array, np.ndarray):
        if not isinstance(location, str):
            raise ValueError('Cannot create memmap without a location!')

        shape = shape if shape is not None else array.shape
        dtype = dtype if dtype is not None else array.dtype
        order = order if order is not None else npy.order(array)

        if shape != array.shape:
            raise ValueError('Shape %r and array shape %r mismatch!' %
                             (shape, array.shape))

        fortran = order in ['F', None]
        #default is 'F' for memmaps
        memmap = np.lib.format.open_memmap(location,
                                           mode='w+',
                                           shape=shape,
                                           dtype=dtype,
                                           fortran_order=fortran)
        memmap[:] = array

        if mode is None:
            mode = 'r+'
        if mode != memmap.mode:
            memmap = np.lib.format.open_memmap(location, mode=mode)

    else:
        raise ValueError('Array is not a valid!')

    return memmap