def fit(self, x, y): x1 = Accumulation.ago(y, None, True) z1 = ModelMethods.based(x1) ones_array = np.diff(x).astype(np.float64) ones_array = ones_array.reshape([-1, 1]) B = ModelMethods.construct_matrix(-z1, ones_array) self.x_orig = y self.params = ModelMethods.get_params(B, x1) return self
def fit(self, x, y): x1 = NewInformationPriorityAccumulation.nipago(y, self.r) z1 = ModelMethods.based(x1) ones_array = np.diff(x).astype(np.float64) ones_array = ones_array.reshape([-1, 1]) range_array = np.arange(len(x) - 1) range_array = range_array.reshape([-1, 1]) B1 = ModelMethods.construct_matrix(-z1, range_array) B = ModelMethods.construct_matrix(-B1, ones_array) self.x_orig = y self.params = ModelMethods.get_params(B, x1) self.x1 = x1 return self
def fit(self, x, y): x1 = Accumulation.ago(y, None, True) z1 = ModelMethods.based(x1) ones_array = np.diff(x).astype(np.float64) ones_array = ones_array.reshape([-1, 1]) range_array = np.arange(len(x) - 1) range_array = range_array.reshape([-1, 1]) B1 = ModelMethods.construct_matrix(-z1, range_array) self.B = ModelMethods.construct_matrix(-B1, ones_array) self.x_orig = y self.params = ModelMethods.get_params(self.B, x1) self.x1 = x1 self.is_fitted = True return self