Esempio n. 1
0
def read(jason_string):
    jason = json.loads(jason_string)
    if 'name' in jason:
        configuration_space = ConfigurationSpace(name=jason['name'])
    else:
        configuration_space = ConfigurationSpace()

    for hyperparameter in jason['hyperparameters']:
        configuration_space.add_hyperparameter(
            _construct_hyperparameter(hyperparameter, ))

    for condition in jason['conditions']:
        configuration_space.add_condition(
            _construct_condition(
                condition,
                configuration_space,
            ))

    for forbidden in jason['forbiddens']:
        configuration_space.add_forbidden_clause(
            _construct_forbidden(
                forbidden,
                configuration_space,
            ))

    return configuration_space
Esempio n. 2
0
    def get_cs():
        cs = ConfigurationSpace()
        epsilon = CategoricalHyperparameter("epsilon",
                                            [1e-4, 1e-3, 1e-2, 1e-1, 1],
                                            default_value=1e-4)
        loss = CategoricalHyperparameter(
            "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"],
            default_value="epsilon_insensitive")
        dual = CategoricalHyperparameter("dual", ['True', 'False'],
                                         default_value='True')
        tol = UniformFloatHyperparameter("tol",
                                         1e-5,
                                         1e-1,
                                         default_value=1e-4,
                                         log=True)
        C = UniformFloatHyperparameter("C",
                                       0.03125,
                                       32768,
                                       log=True,
                                       default_value=1.0)
        fit_intercept = Constant("fit_intercept", "True")
        intercept_scaling = Constant("intercept_scaling", 1)
        cs.add_hyperparameters(
            [epsilon, loss, dual, tol, C, fit_intercept, intercept_scaling])

        dual_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(loss, "epsilon_insensitive"))
        cs.add_forbidden_clause(dual_and_loss)
        return cs
Esempio n. 3
0
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        C = UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default_value=1.0)
        loss = CategoricalHyperparameter(
            "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"],
            default_value="squared_epsilon_insensitive")
        # Random Guess
        epsilon = UniformFloatHyperparameter(
            name="epsilon", lower=0.001, upper=1, default_value=0.1, log=True)
        dual = Constant("dual", "False")
        # These are set ad-hoc
        tol = UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default_value=1e-4, log=True)
        fit_intercept =Constant("fit_intercept", "True")
        intercept_scaling = Constant("intercept_scaling", 1)

        cs.add_hyperparameters([C, loss, epsilon, dual, tol, fit_intercept,
                                intercept_scaling])

        dual_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(loss, "epsilon_insensitive")
        )
        cs.add_forbidden_clause(dual_and_loss)

        return cs
Esempio n. 4
0
def read(jason_string):
    """
    Create a configuration space definition from a json string.

    Example
    -------

    .. testsetup:: json_test

        from ConfigSpace import ConfigurationSpace
        import ConfigSpace.hyperparameters as CSH
        from ConfigSpace.read_and_write import json
        cs = ConfigurationSpace()
        cs.add_hyperparameter(CSH.CategoricalHyperparameter('a', choices=[1, 2, 3]))
        with open('configspace.json', 'w') as f:
             f.write(json.write(cs))

    .. doctest:: json_test

        >>> from ConfigSpace.read_and_write import json
        >>> with open('configspace.json', 'r') as f:
        ...     jason_string = f.read()
        ...     config = json.read(jason_string)

    Parameters
    ----------
    jason_string : str
        A json string representing a configuration space definition

    Returns
    -------
    :class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The deserialized ConfigurationSpace object
    """
    jason = json.loads(jason_string)
    if 'name' in jason:
        configuration_space = ConfigurationSpace(name=jason['name'])
    else:
        configuration_space = ConfigurationSpace()

    for hyperparameter in jason['hyperparameters']:
        configuration_space.add_hyperparameter(
            _construct_hyperparameter(hyperparameter, ))

    for condition in jason['conditions']:
        configuration_space.add_condition(
            _construct_condition(
                condition,
                configuration_space,
            ))

    for forbidden in jason['forbiddens']:
        configuration_space.add_forbidden_clause(
            _construct_forbidden(
                forbidden,
                configuration_space,
            ))

    return configuration_space
Esempio n. 5
0
 def set_probabilities_in_cs(self, cs: ConfigurationSpace,
                             relied2models: Dict[str, List[str]],
                             relied2AllModels: Dict[str, List[str]],
                             all_models: List[str], **kwargs):
     estimator = cs.get_hyperparameter("estimator:__choice__")
     probabilities = []
     model2prob = {}
     L = 0
     for rely_model in relied2models:
         cur_models = relied2models[rely_model]
         L += len(cur_models)
         for model in cur_models:
             model2prob[model] = kwargs[rely_model] / len(cur_models)
     p_rest = (1 - sum(model2prob.values())) / (len(all_models) - L)
     for model in estimator.choices:
         probabilities.append(model2prob.get(model, p_rest))
     estimator.probabilities = probabilities
     default_estimator_choice = None
     for models in relied2models.values():
         if models:
             default_estimator_choice = models[0]
     estimator.default_value = default_estimator_choice
     for rely_model, path in RelyModels.info:
         forbid_eq_value = path[-1]
         path = path[:-1]
         forbid_eq_key = ":".join(path + ["__choice__"])
         forbid_eq_key_hp = cs.get_hyperparameter(forbid_eq_key)
         forbid_in_key = "estimator:__choice__"
         hit = relied2AllModels.get(rely_model)
         if not hit:
             choices = list(forbid_eq_key_hp.choices)
             choices.remove(forbid_eq_value)
             forbid_eq_key_hp.choices = tuple(choices)
             forbid_eq_key_hp.default_value = choices[0]
             forbid_eq_key_hp.probabilities = [1 / len(choices)
                                               ] * len(choices)
             # fixme  最后我放弃了在这上面进行修改,在hdl部分就做了预处理
             continue
         forbid_in_value = list(set(all_models) - set(hit))
         # 只选择了boost模型
         if not forbid_in_value:
             continue
         choices = forbid_eq_key_hp.choices
         probabilities = []
         p: float = kwargs[rely_model]
         p_rest = (1 - p) * (len(choices) - 1)
         for choice in choices:
             if choice == forbid_eq_value:
                 probabilities.append(p)
             else:
                 probabilities.append(p_rest)
         forbid_eq_key_hp.probabilities = probabilities
         cs.add_forbidden_clause(
             ForbiddenAndConjunction(
                 ForbiddenEqualsClause(forbid_eq_key_hp, forbid_eq_value),
                 ForbiddenInClause(cs.get_hyperparameter(forbid_in_key),
                                   forbid_in_value),
             ))
 def test_build_new_forbidden(self):
     expected = "a categorical {a, b, c} [a]\nb categorical {a, b, c} [c]\n\n" \
                "{a=a, b=a}\n{a=a, b=b}\n{a=b, b=a}\n{a=b, b=b}"
     cs = ConfigurationSpace()
     a = CategoricalHyperparameter("a", ["a", "b", "c"], "a")
     b = CategoricalHyperparameter("b", ["a", "b", "c"], "c")
     cs.add_hyperparameter(a)
     cs.add_hyperparameter(b)
     fb = ForbiddenAndConjunction(ForbiddenInClause(a, ["a", "b"]),
                                  ForbiddenInClause(b, ["a", "b"]))
     cs.add_forbidden_clause(fb)
     value = pcs_new.write(cs)
     self.assertIn(expected, value)
Esempio n. 7
0
    def get_hyperparameter_search_space(**kwargs):
        n_clusters_factor = UniformFloatHyperparameter("n_clusters_factor", 0., 1., default_value=1.)
        affinity = CategoricalHyperparameter("affinity", ["euclidean", "manhattan", "cosine"],
                                             default_value="euclidean")
        linkage = CategoricalHyperparameter("linkage", ["ward", "complete", "average"], default_value="ward")
        pooling_func = CategoricalHyperparameter("pooling_func", ["mean", "median", "max"], default_value="mean")

        cs = ConfigurationSpace()
        cs.add_hyperparameters([n_clusters_factor, affinity, linkage, pooling_func])

        affinity_and_linkage = ForbiddenAndConjunction(ForbiddenInClause(affinity, ["manhattan", "cosine"]),
                                                       ForbiddenEqualsClause(linkage, "ward"))
        cs.add_forbidden_clause(affinity_and_linkage)
        return cs
    def get_hyperparameter_search_space(dataset_properties=None,
                                        optimizer='smac'):
        if optimizer == 'smac':
            cs = ConfigurationSpace()

            penalty = Constant("penalty", "l1")
            loss = CategoricalHyperparameter("loss",
                                             ["hinge", "squared_hinge"],
                                             default_value="squared_hinge")
            dual = Constant("dual", "False")
            # This is set ad-hoc
            tol = UniformFloatHyperparameter("tol",
                                             1e-5,
                                             1e-1,
                                             default_value=1e-4,
                                             log=True)
            C = UniformFloatHyperparameter("C",
                                           0.03125,
                                           32768,
                                           log=True,
                                           default_value=1.0)
            multi_class = Constant("multi_class", "ovr")
            # These are set ad-hoc
            fit_intercept = Constant("fit_intercept", "True")
            intercept_scaling = Constant("intercept_scaling", 1)

            cs.add_hyperparameters([
                penalty, loss, dual, tol, C, multi_class, fit_intercept,
                intercept_scaling
            ])

            penalty_and_loss = ForbiddenAndConjunction(
                ForbiddenEqualsClause(penalty, "l1"),
                ForbiddenEqualsClause(loss, "hinge"))
            cs.add_forbidden_clause(penalty_and_loss)
            return cs
        elif optimizer == 'tpe':
            from hyperopt import hp
            space = {
                'tol': hp.loguniform('lbs_tol', np.log(1e-5), np.log(1e-1)),
                'C': hp.loguniform('lbs_C', np.log(0.03125), np.log(32768)),
                'loss': 'squared_hinge',
                'multi_class': 'ovr',
                'dual': 'False',
                'fit_intercept': 'True',
                'intercept_scaling': 1,
                'penalty': 'L1'
            }
            return space
Esempio n. 9
0
 def __forbidden(self, value: List, store: Dict, cs: ConfigurationSpace):
     assert isinstance(value, list)
     for item in value:
         assert isinstance(item, dict)
         clauses = []
         for k, v in item.items():
             if isinstance(v, list) and len(v) == 1:
                 v = v[0]
             if isinstance(v, list):
                 clauses.append(
                     ForbiddenInClause(store[k],
                                       list(map(smac_hdl._encode, v))))
             else:
                 clauses.append(
                     ForbiddenEqualsClause(store[k], smac_hdl._encode(v)))
         cs.add_forbidden_clause(ForbiddenAndConjunction(*clauses))
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        n_clusters = cs.add_hyperparameter(UniformIntegerHyperparameter(
            "n_clusters", 2, 400, 25))
        affinity = cs.add_hyperparameter(CategoricalHyperparameter(
            "affinity", ["euclidean", "manhattan", "cosine"], "euclidean"))
        linkage = cs.add_hyperparameter(CategoricalHyperparameter(
            "linkage", ["ward", "complete", "average"], "ward"))
        pooling_func = cs.add_hyperparameter(CategoricalHyperparameter(
            "pooling_func", ["mean", "median", "max"]))

        affinity_and_linkage = ForbiddenAndConjunction(
            ForbiddenInClause(affinity, ["manhattan", "cosine"]),
            ForbiddenEqualsClause(linkage, "ward"))
        cs.add_forbidden_clause(affinity_and_linkage)
        return cs
Esempio n. 11
0
def read(jason_string):
    """
    Creates a configuration space definition from a json string.

    Example
    -------

    >>> from ConfigSpace.read_and_write import json
    >>> with open('configspace.json', 'r') as f:
    >>>     jason_string = f.read()
    >>>     config = json.read(jason_string)

    Parameters
    ----------
    jason_string : str
        A json string representing a configuration space definition

    Returns
    -------
    :class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The restored ConfigurationSpace object
    """
    jason = json.loads(jason_string)
    if 'name' in jason:
        configuration_space = ConfigurationSpace(name=jason['name'])
    else:
        configuration_space = ConfigurationSpace()

    for hyperparameter in jason['hyperparameters']:
        configuration_space.add_hyperparameter(
            _construct_hyperparameter(hyperparameter, ))

    for condition in jason['conditions']:
        configuration_space.add_condition(
            _construct_condition(
                condition,
                configuration_space,
            ))

    for forbidden in jason['forbiddens']:
        configuration_space.add_forbidden_clause(
            _construct_forbidden(
                forbidden,
                configuration_space,
            ))

    return configuration_space
Esempio n. 12
0
    def get_hyperparameter_search_space(dataset_properties=None, optimizer='smac'):
        cs = ConfigurationSpace()
        n_clusters = UniformIntegerHyperparameter("n_clusters", 2, 400, default_value=25)
        affinity = CategoricalHyperparameter(
            "affinity", ["euclidean", "manhattan", "cosine"], default_value="euclidean")
        linkage = CategoricalHyperparameter(
            "linkage", ["ward", "complete", "average"], default_value="ward")
        pooling_func = CategoricalHyperparameter(
            "pooling_func", ["mean", "median", "max"], default_value="mean")

        cs.add_hyperparameters([n_clusters, affinity, linkage, pooling_func])

        affinity_and_linkage = ForbiddenAndConjunction(
            ForbiddenInClause(affinity, ["manhattan", "cosine"]),
            ForbiddenEqualsClause(linkage, "ward"))
        cs.add_forbidden_clause(affinity_and_linkage)
        return cs
Esempio n. 13
0
def read(jason_string):
    """
    Creates a configuration space definition from a json string.

    Example
    -------

    >>> from ConfigSpace.read_and_write import json
    >>> with open('configspace.json', 'r') as f:
    >>>     jason_string = f.read()
    >>>     config = json.read(jason_string)

    Parameters
    ----------
    jason_string : str
        A json string representing a configuration space definition

    Returns
    -------
    :class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The restored ConfigurationSpace object
    """
    jason = json.loads(jason_string)
    if 'name' in jason:
        configuration_space = ConfigurationSpace(name=jason['name'])
    else:
        configuration_space = ConfigurationSpace()

    for hyperparameter in jason['hyperparameters']:
        configuration_space.add_hyperparameter(_construct_hyperparameter(
            hyperparameter,
        ))

    for condition in jason['conditions']:
        configuration_space.add_condition(_construct_condition(
            condition, configuration_space,
        ))

    for forbidden in jason['forbiddens']:
        configuration_space.add_forbidden_clause(_construct_forbidden(
            forbidden, configuration_space,
        ))

    return configuration_space
Esempio n. 14
0
    def get_hyperparameter_search_space(dataset_properties=None, optimizer='smac'):
        if optimizer == 'smac':
            cs = ConfigurationSpace()
            epsilon = CategoricalHyperparameter("epsilon", [1e-4, 1e-3, 1e-2, 1e-1, 1], default_value=1e-4)
            loss = CategoricalHyperparameter(
                "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"], default_value="epsilon_insensitive")
            dual = CategoricalHyperparameter("dual", ['True', 'False'], default_value='True')
            tol = UniformFloatHyperparameter(
                "tol", 1e-5, 1e-1, default_value=1e-4, log=True)
            C = UniformFloatHyperparameter(
                "C", 0.03125, 32768, log=True, default_value=1.0)
            fit_intercept = Constant("fit_intercept", "True")
            intercept_scaling = Constant("intercept_scaling", 1)
            cs.add_hyperparameters([epsilon, loss, dual, tol, C,
                                    fit_intercept, intercept_scaling])

            dual_and_loss = ForbiddenAndConjunction(
                ForbiddenEqualsClause(dual, "False"),
                ForbiddenEqualsClause(loss, "epsilon_insensitive")
            )
            cs.add_forbidden_clause(dual_and_loss)
            return cs
        elif optimizer == 'tpe':
            from hyperopt import hp
            space = {'loss': hp.choice('liblinear_combination', [{'loss': "epsilon_insensitive", 'dual': "True"},
                                                                 {'loss': "squared_epsilon_insensitive",
                                                                  'dual': "True"},
                                                                 {'loss': "squared_epsilon_insensitive",
                                                                  'dual': "False"}]),
                     'dual': None,
                     'tol': hp.loguniform('liblinear_tol', np.log(1e-5), np.log(1e-1)),
                     'C': hp.loguniform('liblinear_C', np.log(0.03125), np.log(32768)),
                     'fit_intercept': hp.choice('liblinear_fit_intercept', ["True"]),
                     'intercept_scaling': hp.choice('liblinear_intercept_scaling', [1])}

            init_trial = {'loss': {'loss': "epsilon_insensitive", 'dual': "True"},
                          'tol': 1e-4,
                          'C': 1,
                          'fit_intercept': "True",
                          'intercept_scaling': 1}

            return space
Esempio n. 15
0
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        n_clusters = cs.add_hyperparameter(
            UniformIntegerHyperparameter("n_clusters", 2, 400, 25))
        affinity = cs.add_hyperparameter(
            CategoricalHyperparameter("affinity",
                                      ["euclidean", "manhattan", "cosine"],
                                      "euclidean"))
        linkage = cs.add_hyperparameter(
            CategoricalHyperparameter("linkage",
                                      ["ward", "complete", "average"], "ward"))
        pooling_func = cs.add_hyperparameter(
            CategoricalHyperparameter("pooling_func",
                                      ["mean", "median", "max"]))

        affinity_and_linkage = ForbiddenAndConjunction(
            ForbiddenInClause(affinity, ["manhattan", "cosine"]),
            ForbiddenEqualsClause(linkage, "ward"))
        cs.add_forbidden_clause(affinity_and_linkage)
        return cs
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        penalty = cs.add_hyperparameter(Constant("penalty", "l1"))
        loss = cs.add_hyperparameter(CategoricalHyperparameter(
            "loss", ["hinge", "squared_hinge"], default="squared_hinge"))
        dual = cs.add_hyperparameter(Constant("dual", "False"))
        # This is set ad-hoc
        tol = cs.add_hyperparameter(UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default=1e-4, log=True))
        C = cs.add_hyperparameter(UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default=1.0))
        multi_class = cs.add_hyperparameter(Constant("multi_class", "ovr"))
        # These are set ad-hoc
        fit_intercept = cs.add_hyperparameter(Constant("fit_intercept", "True"))
        intercept_scaling = cs.add_hyperparameter(Constant(
            "intercept_scaling", 1))

        penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "hinge")
        )
        cs.add_forbidden_clause(penalty_and_loss)
        return cs
Esempio n. 17
0
    def get_hyperparameter_search_space(**kwargs):
        cs = ConfigurationSpace()

        penalty = CategoricalHyperparameter("penalty", ["l1", "l2"], default_value="l2")
        loss = CategoricalHyperparameter("loss", ["hinge", "squared_hinge"], default_value="squared_hinge")
        dual = CategoricalHyperparameter("dual", [True, False], default_value=True)
        tol = UniformFloatHyperparameter("tol", 1e-5, 120., default_value=1e-4)
        C = UniformFloatHyperparameter("C", 1e-7, 100., default_value=1.)
        multi_class = CategoricalHyperparameter("multi_class", ["ovr", "crammer_singer"], default_value="ovr")
        fit_intercept = CategoricalHyperparameter("fit_intercept", [True, False], default_value=True)
        intercept_scaling = UniformFloatHyperparameter("intercept_scaling", 0., 1., default_value=1.)
        max_iter = UniformIntegerHyperparameter("max_iter", 100, 2000, default_value=1000)

        cs.add_hyperparameters(
            [C, penalty, loss, dual, tol, multi_class, fit_intercept, intercept_scaling, max_iter])

        penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "hinge")
        )
        constant_penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, False),
            ForbiddenEqualsClause(penalty, "l2"),
            ForbiddenEqualsClause(loss, "hinge")
        )
        penalty_and_dual = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, False),
            ForbiddenEqualsClause(penalty, "l1")
        )
        constant_penalty_and_loss2 = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, True),
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "squared_hinge")
        )
        cs.add_forbidden_clause(penalty_and_loss)
        cs.add_forbidden_clause(constant_penalty_and_loss)
        cs.add_forbidden_clause(penalty_and_dual)
        cs.add_forbidden_clause(constant_penalty_and_loss2)

        return cs
Esempio n. 18
0
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        penalty = CategoricalHyperparameter("penalty", ["l1", "l2"],
                                            default_value="l2")
        loss = CategoricalHyperparameter("loss", ["hinge", "squared_hinge"],
                                         default_value="squared_hinge")
        dual = Constant("dual", "False")
        # This is set ad-hoc
        tol = UniformFloatHyperparameter("tol",
                                         1e-5,
                                         1e-1,
                                         default_value=1e-4,
                                         log=True)
        C = UniformFloatHyperparameter("C",
                                       0.03125,
                                       32768,
                                       log=True,
                                       default_value=1.0)
        multi_class = Constant("multi_class", "ovr")
        # These are set ad-hoc
        fit_intercept = Constant("fit_intercept", "True")
        intercept_scaling = Constant("intercept_scaling", 1)
        cs.add_hyperparameters([
            penalty, loss, dual, tol, C, multi_class, fit_intercept,
            intercept_scaling
        ])

        penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "hinge"))
        constant_penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(penalty, "l2"),
            ForbiddenEqualsClause(loss, "hinge"))
        penalty_and_dual = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(penalty, "l1"))
        cs.add_forbidden_clause(penalty_and_loss)
        cs.add_forbidden_clause(constant_penalty_and_loss)
        cs.add_forbidden_clause(penalty_and_dual)
        return cs
Esempio n. 19
0
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        penalty = CategoricalHyperparameter(
            "penalty", ["l1", "l2"], default_value="l2")
        loss = CategoricalHyperparameter(
            "loss", ["hinge", "squared_hinge"], default_value="squared_hinge")
        dual = Constant("dual", "False")
        # This is set ad-hoc
        tol = UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default_value=1e-4, log=True)
        C = UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default_value=1.0)
        multi_class = Constant("multi_class", "ovr")
        # These are set ad-hoc
        fit_intercept = Constant("fit_intercept", "True")
        intercept_scaling = Constant("intercept_scaling", 1)
        cs.add_hyperparameters([penalty, loss, dual, tol, C, multi_class,
                                fit_intercept, intercept_scaling])

        penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "hinge")
        )
        constant_penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(penalty, "l2"),
            ForbiddenEqualsClause(loss, "hinge")
        )
        penalty_and_dual = ForbiddenAndConjunction(
            ForbiddenEqualsClause(dual, "False"),
            ForbiddenEqualsClause(penalty, "l1")
        )
        cs.add_forbidden_clause(penalty_and_loss)
        cs.add_forbidden_clause(constant_penalty_and_loss)
        cs.add_forbidden_clause(penalty_and_dual)
        return cs
Esempio n. 20
0
def read(pcs_string, debug=False):
    """
    Reads in a :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
     definition from a pcs file.

    Example
    -------

    >>> from ConfigSpace.read_and_write import pcs
    >>> with open('configspace.pcs', 'r') as fh:
    >>>     restored_conf = pcs_new.read(fh)

    Parameters
    ----------
    pcs_string : str
        ConfigSpace definition in pcs format
    debug : bool
        Provides debug information. Defaults to False.

    Returns
    -------
    :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The restored ConfigurationSpace object

    """
    configuration_space = ConfigurationSpace()
    conditions = []
    forbidden = []

    # some statistics
    ct = 0
    cont_ct = 0
    cat_ct = 0
    line_ct = 0

    for line in pcs_string:
        line_ct += 1

        if "#" in line:
            # It contains a comment
            pos = line.find("#")
            line = line[:pos]

        # Remove quotes and whitespaces at beginning and end
        line = line.replace('"', "").replace("'", "")
        line = line.strip()

        if "|" in line:
            # It's a condition
            try:
                c = pp_condition.parseString(line)
                conditions.append(c)
            except pyparsing.ParseException:
                raise NotImplementedError("Could not parse condition: %s" % line)
            continue
        if "}" not in line and "]" not in line:
            continue
        if line.startswith("{") and line.endswith("}"):
            forbidden.append(line)
            continue
        if len(line.strip()) == 0:
            continue

        ct += 1
        param = None

        create = {"int": UniformIntegerHyperparameter,
                  "float": UniformFloatHyperparameter,
                  "categorical": CategoricalHyperparameter}

        try:
            param_list = pp_cont_param.parseString(line)
            il = param_list[9:]
            if len(il) > 0:
                il = il[0]
            param_list = param_list[:9]
            name = param_list[0]
            lower = float(param_list[2])
            upper = float(param_list[4])
            paramtype = "int" if "i" in il else "float"
            log = True if "l" in il else False
            default_value = float(param_list[7])
            param = create[paramtype](name=name, lower=lower, upper=upper,
                                      q=None, log=log, default_value=default_value)
            cont_ct += 1
        except pyparsing.ParseException:
            pass

        try:
            param_list = pp_cat_param.parseString(line)
            name = param_list[0]
            choices = [c for c in param_list[2:-4:2]]
            default_value = param_list[-2]
            param = create["categorical"](name=name, choices=choices,
                                          default_value=default_value)
            cat_ct += 1
        except pyparsing.ParseException:
            pass

        if param is None:
            raise NotImplementedError("Could not parse: %s" % line)

        configuration_space.add_hyperparameter(param)

    for clause in forbidden:
        # TODO test this properly!
        # TODO Add a try/catch here!
        # noinspection PyUnusedLocal
        param_list = pp_forbidden_clause.parseString(clause)
        tmp_list = []
        clause_list = []
        for value in param_list[1:]:
            if len(tmp_list) < 3:
                tmp_list.append(value)
            else:
                # So far, only equals is supported by SMAC
                if tmp_list[1] == '=':
                    # TODO maybe add a check if the hyperparameter is
                    # actually in the configuration space
                    clause_list.append(ForbiddenEqualsClause(
                        configuration_space.get_hyperparameter(tmp_list[0]),
                        tmp_list[2]))
                else:
                    raise NotImplementedError()
                tmp_list = []
        configuration_space.add_forbidden_clause(ForbiddenAndConjunction(
            *clause_list))

    # Now handle conditions
    # If there are two conditions for one child, these two conditions are an
    # AND-conjunction of conditions, thus we have to connect them
    conditions_per_child = OrderedDict()
    for condition in conditions:
        child_name = condition[0]
        if child_name not in conditions_per_child:
            conditions_per_child[child_name] = list()
        conditions_per_child[child_name].append(condition)

    for child_name in conditions_per_child:
        condition_objects = []
        for condition in conditions_per_child[child_name]:
            child = configuration_space.get_hyperparameter(child_name)
            parent_name = condition[2]
            parent = configuration_space.get_hyperparameter(parent_name)
            restrictions = condition[5:-1:2]

            # TODO: cast the type of the restriction!
            if len(restrictions) == 1:
                condition = EqualsCondition(child, parent, restrictions[0])
            else:
                condition = InCondition(child, parent, values=restrictions)
            condition_objects.append(condition)

        # Now we have all condition objects for this child, so we can build a
        #  giant AND-conjunction of them (if number of conditions >= 2)!

        if len(condition_objects) > 1:
            and_conjunction = AndConjunction(*condition_objects)
            configuration_space.add_condition(and_conjunction)
        else:
            configuration_space.add_condition(condition_objects[0])

    return configuration_space
Esempio n. 21
0
    def get_hyperparameter_search_space(cls, dataset_properties=None,
                                        default=None,
                                        include=None,
                                        exclude=None):
        cs = ConfigurationSpace()

        # Compile a list of legal preprocessors for this problem
        available_preprocessors = cls.get_available_components(
            data_prop=dataset_properties,
            include=include, exclude=exclude)

        if len(available_preprocessors) == 0:
            raise ValueError(
                "No rescaling algorithm found.")

        if default is None:
            defaults = ['min/max', 'standardize', 'none', 'normalize']
            for default_ in defaults:
                if default_ in available_preprocessors:
                    default = default_
                    break

        preprocessor = CategoricalHyperparameter('__choice__',
                                                 list(
                                                     available_preprocessors.keys()),
                                                 default=default)
        cs.add_hyperparameter(preprocessor)
        for name in available_preprocessors:
            preprocessor_configuration_space = available_preprocessors[name]. \
                get_hyperparameter_search_space(dataset_properties)
            for parameter in preprocessor_configuration_space.get_hyperparameters():
                new_parameter = copy.deepcopy(parameter)
                new_parameter.name = "%s:%s" % (name, new_parameter.name)
                cs.add_hyperparameter(new_parameter)
                # We must only add a condition if the hyperparameter is not
                # conditional on something else
                if len(preprocessor_configuration_space.
                        get_parents_of(parameter)) == 0:
                    condition = EqualsCondition(new_parameter, preprocessor,
                                                name)
                    cs.add_condition(condition)

            for condition in available_preprocessors[name]. \
                    get_hyperparameter_search_space(
                    dataset_properties).get_conditions():
                if not isinstance(condition, AbstractConjunction):
                    dlcs = [condition]
                else:
                    dlcs = condition.get_descendent_literal_conditions()
                for dlc in dlcs:
                    if not dlc.child.name.startswith(name):
                        dlc.child.name = "%s:%s" % (name, dlc.child.name)
                    if not dlc.parent.name.startswith(name):
                        dlc.parent.name = "%s:%s" % (name, dlc.parent.name)
                cs.add_condition(condition)

            for forbidden_clause in available_preprocessors[name]. \
                    get_hyperparameter_search_space(
                    dataset_properties).forbidden_clauses:
                dlcs = forbidden_clause.get_descendant_literal_clauses()
                for dlc in dlcs:
                    if not dlc.hyperparameter.name.startswith(name):
                        dlc.hyperparameter.name = "%s:%s" % (name,
                                                             dlc.hyperparameter.name)
                cs.add_forbidden_clause(forbidden_clause)

        return cs
Esempio n. 22
0
                               0.03125,
                               32768,
                               log=True,
                               default_value=1.0)
loss = CategoricalHyperparameter(
    "loss", ["epsilon_insensitive", "squared_epsilon_insensitive"],
    default_value="squared_epsilon_insensitive")
epsilon = UniformFloatHyperparameter(name="epsilon",
                                     lower=0.001,
                                     upper=1,
                                     default_value=0.1,
                                     log=True)
dual = Constant("dual", "False")
tol = UniformFloatHyperparameter("tol",
                                 1e-5,
                                 1e-1,
                                 default_value=1e-4,
                                 log=True)
fit_intercept = Constant("fit_intercept", "True")
intercept_scaling = Constant("intercept_scaling", 1)

cs.add_hyperparameters(
    [C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling])

dual_and_loss = ForbiddenAndConjunction(
    ForbiddenEqualsClause(dual, "False"),
    ForbiddenEqualsClause(loss, "epsilon_insensitive"))
cs.add_forbidden_clause(dual_and_loss)

json_utils.write_cs_to_json_file(cs, "LinearSVR")
def add_forbidden(
    conf_space: ConfigurationSpace,
    pipeline: List[Tuple[str, autoPyTorchChoice]],
    matches: np.ndarray,
    dataset_properties: Dict[str, Any],
    include: Optional[Dict[str, Any]] = None,
    exclude: Optional[Dict[str, Any]] = None
) -> ConfigurationSpace:
    # Not sure if this works for 3D
    node_i_is_choice = []
    node_i_choices_names: List[List[str]] = []
    node_i_choices: List[List[Union[autoPyTorchComponent, autoPyTorchChoice]]] = []
    all_nodes = []
    for node_name, node in pipeline:
        all_nodes.append(node)
        is_choice = hasattr(node, "get_available_components")
        node_i_is_choice.append(is_choice)

        node_include = include.get(
            node_name) if include is not None else None
        node_exclude = exclude.get(
            node_name) if exclude is not None else None

        if is_choice:
            node_i_choices_names.append(
                [str(element) for element in
                    node.get_available_components(
                    dataset_properties, include=node_include,
                    exclude=node_exclude).keys()]

            )
            node_i_choices.append(
                list(node.get_available_components(
                    dataset_properties, include=node_include,
                    exclude=node_exclude
                ).values()))

        else:
            node_i_choices_names.append([node_name])
            node_i_choices.append([node])

    # Find out all chains of choices. Only in such a chain its possible to
    # have several forbidden constraints
    choices_chains = []
    idx = 0
    while idx < len(pipeline):
        if node_i_is_choice[idx]:
            chain_start = idx
            idx += 1
            while idx < len(pipeline) and node_i_is_choice[idx]:
                idx += 1
            chain_stop = idx
            choices_chains.append((chain_start, chain_stop))
        idx += 1

    for choices_chain in choices_chains:
        constraints: Set[Tuple] = set()

        chain_start = choices_chain[0]
        chain_stop = choices_chain[1]
        chain_length = chain_stop - chain_start

        # Add one to have also have chain_length in the range
        for sub_chain_length in range(2, chain_length + 1):
            for start_idx in range(chain_start, chain_stop - sub_chain_length + 1):
                indices = range(start_idx, start_idx + sub_chain_length)
                node_names = [pipeline[idx][0] for idx in indices]

                num_node_choices = []
                node_choice_names = []
                skip_array_shape = []

                for idx in indices:
                    node = all_nodes[idx]
                    available_components = node.get_available_components(
                        dataset_properties,
                        include=node_i_choices_names[idx])
                    assert len(available_components) > 0, len(available_components)
                    skip_array_shape.append(len(available_components))
                    num_node_choices.append(range(len(available_components)))
                    node_choice_names.append([name for name in available_components])

                # Figure out which choices were already abandoned
                skip_array = np.zeros(skip_array_shape)
                for product in itertools.product(*num_node_choices):
                    for node_idx, choice_idx in enumerate(product):
                        node_idx += start_idx
                        slices_ = tuple(
                            slice(None) if idx != node_idx else
                            slice(choice_idx, choice_idx + 1) for idx in
                            range(len(matches.shape)))

                        if np.sum(matches[slices_]) == 0:
                            skip_array[product] = 1

                for product in itertools.product(*num_node_choices):
                    if skip_array[product]:
                        continue

                    slices = tuple(
                        slice(None) if idx not in indices else
                        slice(product[idx - start_idx],
                              product[idx - start_idx] + 1) for idx in
                        range(len(matches.shape)))

                    if np.sum(matches[slices]) == 0:
                        constraint = tuple([(node_names[i],
                                             node_choice_names[i][product[i]])
                                            for i in range(len(product))])

                        # Check if a more general constraint/forbidden clause
                        #  was already added
                        continue_ = False
                        for constraint_length in range(2, len(constraint)):
                            constr_starts = len(constraint) - constraint_length + 1
                            for constraint_start_idx in range(constr_starts):
                                constraint_end_idx = constraint_start_idx + constraint_length
                                sub_constraint = constraint[constraint_start_idx:constraint_end_idx]
                                if sub_constraint in constraints:
                                    continue_ = True
                                    break
                            if continue_:
                                break
                        if continue_:
                            continue

                        constraints.add(constraint)

                        forbiddens = []
                        for i in range(len(product)):
                            forbiddens.append(
                                ForbiddenEqualsClause(conf_space.get_hyperparameter(
                                    node_names[i] + ":__choice__"),
                                    node_choice_names[i][product[i]]))
                        forbidden = ForbiddenAndConjunction(*forbiddens)
                        conf_space.add_forbidden_clause(forbidden)

    return conf_space
Esempio n. 24
0
def read(pcs_string, debug=False):
    """
    Read in a :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
    definition from a pcs file.

    Example
    -------

    .. testsetup:: pcs_new_test

        from ConfigSpace import ConfigurationSpace
        import ConfigSpace.hyperparameters as CSH
        from ConfigSpace.read_and_write import pcs_new
        cs = ConfigurationSpace()
        cs.add_hyperparameter(CSH.CategoricalHyperparameter('a', choices=[1, 2, 3]))
        with open('configspace.pcs_new', 'w') as f:
             f.write(pcs_new.write(cs))

    .. doctest:: pcs_new_test

        >>> from ConfigSpace.read_and_write import pcs_new
        >>> with open('configspace.pcs_new', 'r') as fh:
        ...     deserialized_conf = pcs_new.read(fh)

    Parameters
    ----------
    pcs_string : str
        ConfigSpace definition in pcs format
    debug : bool
        Provides debug information. Defaults to False.

    Returns
    -------
    :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The deserialized ConfigurationSpace object

    """
    configuration_space = ConfigurationSpace()
    conditions = []
    forbidden = []

    # some statistics
    ct = 0
    cont_ct = 0
    cat_ct = 0
    ord_ct = 0
    line_ct = 0

    for line in pcs_string:
        line_ct += 1

        if "#" in line:
            # It contains a comment
            pos = line.find("#")
            line = line[:pos]

        # Remove quotes and whitespaces at beginning and end
        line = line.replace('"', "").replace("'", "")
        line = line.strip()
        if "|" in line:
            # It's a condition
            try:
                c = pp_condition.parseString(line)
                conditions.append(c)
            except pyparsing.ParseException:
                raise NotImplementedError("Could not parse condition: %s" %
                                          line)
            continue
        if "}" not in line and "]" not in line:
            continue
        if line.startswith("{") and line.endswith("}"):
            forbidden.append(line)
            continue
        if len(line.strip()) == 0:
            continue

        ct += 1
        param = None

        create = {
            "int": UniformIntegerHyperparameter,
            "float": UniformFloatHyperparameter,
            "categorical": CategoricalHyperparameter,
            "ordinal": OrdinalHyperparameter
        }

        try:
            param_list = pp_cont_param.parseString(line)
            name = param_list[0]
            if param_list[1] == 'integer':
                paramtype = 'int'
            elif param_list[1] == 'real':
                paramtype = 'float'
            else:
                paramtype = None

            if paramtype in ['int', 'float']:
                log = param_list[10:]
                param_list = param_list[:10]
                if len(log) > 0:
                    log = log[0]
                lower = float(param_list[3])
                upper = float(param_list[5])
                log_on = True if "log" in log else False
                default_value = float(param_list[8])
                param = create[paramtype](name=name,
                                          lower=lower,
                                          upper=upper,
                                          q=None,
                                          log=log_on,
                                          default_value=default_value)
                cont_ct += 1

        except pyparsing.ParseException:
            pass

        try:
            if "categorical" in line:
                param_list = pp_cat_param.parseString(line)
                name = param_list[0]
                choices = [choice for choice in param_list[3:-4:2]]
                default_value = param_list[-2]
                param = create["categorical"](
                    name=name,
                    choices=choices,
                    default_value=default_value,
                )
                cat_ct += 1

            elif "ordinal" in line:
                param_list = pp_ord_param.parseString(line)
                name = param_list[0]
                sequence = [seq for seq in param_list[3:-4:2]]
                default_value = param_list[-2]
                param = create["ordinal"](
                    name=name,
                    sequence=sequence,
                    default_value=default_value,
                )
                ord_ct += 1

        except pyparsing.ParseException:
            pass

        if param is None:
            raise NotImplementedError("Could not parse: %s" % line)

        configuration_space.add_hyperparameter(param)

    for clause in forbidden:
        param_list = pp_forbidden_clause.parseString(clause)
        tmp_list = []
        clause_list = []
        for value in param_list[1:]:
            if len(tmp_list) < 3:
                tmp_list.append(value)
            else:
                # So far, only equals is supported by SMAC
                if tmp_list[1] == '=':
                    hp = configuration_space.get_hyperparameter(tmp_list[0])
                    if isinstance(hp, NumericalHyperparameter):
                        if isinstance(hp, IntegerHyperparameter):
                            forbidden_value = int(tmp_list[2])
                        elif isinstance(hp, FloatHyperparameter):
                            forbidden_value = float(tmp_list[2])
                        else:
                            raise NotImplementedError
                        if forbidden_value < hp.lower or forbidden_value > hp.upper:
                            raise ValueError(
                                f'forbidden_value is set out of the bound, it needs to'
                                f' be set between [{hp.lower}, {hp.upper}]'
                                f' but its value is {forbidden_value}')
                    elif isinstance(
                            hp,
                        (CategoricalHyperparameter, OrdinalHyperparameter)):
                        hp_values = hp.choices if isinstance(hp, CategoricalHyperparameter)\
                            else hp.sequence
                        forbidden_value_in_hp_values = tmp_list[2] in hp_values
                        if forbidden_value_in_hp_values:
                            forbidden_value = tmp_list[2]
                        else:
                            raise ValueError(
                                f'forbidden_value is set out of the allowed value '
                                f'sets, it needs to be one member from {hp_values} '
                                f'but its value is {forbidden_value}')
                    else:
                        raise ValueError('Unsupported Hyperparamter sorts')

                    clause_list.append(
                        ForbiddenEqualsClause(
                            configuration_space.get_hyperparameter(
                                tmp_list[0]), forbidden_value))
                else:
                    raise NotImplementedError()
                tmp_list = []
        configuration_space.add_forbidden_clause(
            ForbiddenAndConjunction(*clause_list))

    conditions_per_child = OrderedDict()
    for condition in conditions:
        child_name = condition[0]
        if child_name not in conditions_per_child:
            conditions_per_child[child_name] = list()
        conditions_per_child[child_name].append(condition)

    for child_name in conditions_per_child:
        for condition in conditions_per_child[child_name]:
            condition = condition[2:]
            condition = ' '.join(condition)
            if '||' in str(condition):
                ors = []
                # 1st case we have a mixture of || and &&
                if '&&' in str(condition):
                    ors_combis = []
                    for cond_parts in str(condition).split('||'):
                        condition = str(cond_parts).split('&&')
                        # if length is 1 it must be or
                        if len(condition) == 1:
                            element_list = condition[0].split()
                            ors_combis.append(
                                condition_specification(
                                    child_name,
                                    element_list,
                                    configuration_space,
                                ))
                        else:
                            # now taking care of ands
                            ands = []
                            for and_part in condition:
                                element_list = [
                                    element for part in condition
                                    for element in and_part.split()
                                ]
                                ands.append(
                                    condition_specification(
                                        child_name,
                                        element_list,
                                        configuration_space,
                                    ))
                            ors_combis.append(AndConjunction(*ands))
                    mixed_conjunction = OrConjunction(*ors_combis)
                    configuration_space.add_condition(mixed_conjunction)
                else:
                    # 2nd case: we only have ors
                    for cond_parts in str(condition).split('||'):
                        element_list = [
                            element for element in cond_parts.split()
                        ]
                        ors.append(
                            condition_specification(
                                child_name,
                                element_list,
                                configuration_space,
                            ))
                    or_conjunction = OrConjunction(*ors)
                    configuration_space.add_condition(or_conjunction)
            else:
                # 3rd case: we only have ands
                if '&&' in str(condition):
                    ands = []
                    for cond_parts in str(condition).split('&&'):
                        element_list = [
                            element for element in cond_parts.split()
                        ]
                        ands.append(
                            condition_specification(
                                child_name,
                                element_list,
                                configuration_space,
                            ))
                    and_conjunction = AndConjunction(*ands)
                    configuration_space.add_condition(and_conjunction)
                else:
                    # 4th case: we have a normal condition
                    element_list = [element for element in condition.split()]
                    normal_condition = condition_specification(
                        child_name,
                        element_list,
                        configuration_space,
                    )
                    configuration_space.add_condition(normal_condition)

    return configuration_space
Esempio n. 25
0
def read(pcs_string, debug=False):
    configuration_space = ConfigurationSpace()
    conditions = []
    forbidden = []

    # some statistics
    ct = 0
    cont_ct = 0
    cat_ct = 0
    ord_ct = 0
    line_ct = 0

    for line in pcs_string:
        line_ct += 1

        if "#" in line:
            # It contains a comment
            pos = line.find("#")
            line = line[:pos]

        # Remove quotes and whitespaces at beginning and end
        line = line.replace('"', "").replace("'", "")
        line = line.strip()
        if "|" in line:
            # It's a condition
            try:
                c = pp_condition.parseString(line)
                conditions.append(c)
            except pyparsing.ParseException:
                raise NotImplementedError("Could not parse condition: %s" % line)
            continue
        if "}" not in line and "]" not in line:
            continue
        if line.startswith("{") and line.endswith("}"):
            forbidden.append(line)
            continue
        if len(line.strip()) == 0:
            continue

        ct += 1
        param = None

        create = {"int": UniformIntegerHyperparameter,
                  "float": UniformFloatHyperparameter,
                  "categorical": CategoricalHyperparameter,
                  "ordinal": OrdinalHyperparameter
                  }

        try:
            param_list = pp_cont_param.parseString(line)
            name = param_list[0]
            if param_list[1]  == 'integer':
                paramtype = 'int'
            elif param_list[1] == 'real':
                paramtype = 'float'
            else:
                paramtype = None

            if paramtype in ['int', 'float']:
                log = param_list[10:]
                param_list = param_list[:10]
                if len(log) > 0:
                    log = log[0]
                lower = float(param_list[3])
                upper = float(param_list[5])
                log_on = True if "log" in log else False
                default = float(param_list[8])
                param = create[paramtype](name=name, lower=lower, upper=upper,
                                          q=None, log=log_on, default=default)
                cont_ct += 1

        except pyparsing.ParseException:
            pass

        try:
            if "categorical" in line:
                param_list = pp_cat_param.parseString(line)
                name = param_list[0]
                choices = [choice for choice in param_list[3:-4:2]]
                default = param_list[-2]
                param = create["categorical"](name=name, choices=choices, default=default)
                cat_ct += 1

            elif "ordinal" in line:
                param_list = pp_ord_param.parseString(line)
                name = param_list[0]
                sequence = [seq for seq in param_list[3:-4:2]]
                default = param_list[-2]
                param = create["ordinal"](name=name, sequence=sequence, default=default)
                ord_ct += 1

        except pyparsing.ParseException:
            pass

        if param is None:
            raise NotImplementedError("Could not parse: %s" % line)

        configuration_space.add_hyperparameter(param)

    for clause in forbidden:
        param_list = pp_forbidden_clause.parseString(clause)
        tmp_list = []
        clause_list = []
        for value in param_list[1:]:
            if len(tmp_list) < 3:
                tmp_list.append(value)
            else:
                # So far, only equals is supported by SMAC
                if tmp_list[1] == '=':
                    # TODO maybe add a check if the hyperparameter is
                    # actually in the configuration space
                    clause_list.append(ForbiddenEqualsClause(
                        configuration_space.get_hyperparameter(tmp_list[0]),
                        tmp_list[2]))
                else:
                    raise NotImplementedError()
                tmp_list = []
        configuration_space.add_forbidden_clause(ForbiddenAndConjunction(
            *clause_list))
            
    conditions_per_child = OrderedDict()
    for condition in conditions:
        child_name = condition[0]
        if child_name not in conditions_per_child:
            conditions_per_child[child_name] = list()
        conditions_per_child[child_name].append(condition)

    for child_name in conditions_per_child:
        for condition in conditions_per_child[child_name]:
            condition = condition[2:]
            condition = ' '.join(condition)
            if '||' in str(condition):
                ors = []
                # 1st case we have a mixture of || and &&
                if '&&' in str(condition):
                    ors_combis = []
                    for cond_parts in str(condition).split('||'):
                        condition = str(cond_parts).split('&&')
                        # if length is 1 it must be or
                        if len(condition) == 1:
                            element_list =  condition[0].split()
                            ors_combis.append(condition_specification(child_name, element_list, configuration_space))       
                        else:
                            # now taking care of ands
                            ands = []
                            for and_part in condition:
                                element_list = [element for part in condition for element in and_part.split()]
                                ands.append(condition_specification(child_name, element_list, configuration_space))
                            ors_combis.append(AndConjunction(*ands))
                    mixed_conjunction = OrConjunction(*ors_combis)
                    configuration_space.add_condition(mixed_conjunction)
                else:
                    # 2nd case: we only have ors
                    for cond_parts in str(condition).split('||'):
                        element_list = [element for element in cond_parts.split()]
                        ors.append(condition_specification(child_name, element_list, configuration_space))
                    or_conjunction = OrConjunction(*ors)
                    configuration_space.add_condition(or_conjunction)
            else:
                # 3rd case: we only have ands
                if '&&' in str(condition):
                    ands = []
                    for cond_parts in str(condition).split('&&'):
                        element_list = [element for element in cond_parts.split()]
                        ands.append(condition_specification(child_name, element_list, configuration_space))
                    and_conjunction = AndConjunction(*ands)
                    configuration_space.add_condition(and_conjunction)
                else:
                    # 4th case: we have a normal condition
                    element_list = [element for element in condition.split()]
                    normal_condition = condition_specification(child_name, element_list, configuration_space)
                    configuration_space.add_condition(normal_condition)
   
    return configuration_space
Esempio n. 26
0
    def get_hyperparameter_search_space(cls, dataset_properties,
                                        default=None,
                                        include=None,
                                        exclude=None):
        if include is not None and exclude is not None:
            raise ValueError("The argument include and exclude cannot be used together.")

        cs = ConfigurationSpace()

        # Compile a list of all estimator objects for this problem
        available_estimators = cls.get_available_components(
            data_prop=dataset_properties,
            include=include,
            exclude=exclude)

        if len(available_estimators) == 0:
            raise ValueError("No regressors found")

        if default is None:
            defaults = ['random_forest', 'support_vector_regression'] + \
                list(available_estimators.keys())
            for default_ in defaults:
                if default_ in available_estimators:
                    if include is not None and default_ not in include:
                        continue
                    if exclude is not None and default_ in exclude:
                        continue
                    default = default_
                    break

        estimator = CategoricalHyperparameter('__choice__',
                                              list(available_estimators.keys()),
                                              default=default)
        cs.add_hyperparameter(estimator)
        for estimator_name in available_estimators.keys():

            # We have to retrieve the configuration space every time because
            # we change the objects it returns. If we reused it, we could not
            # retrieve the conditions further down
            # TODO implement copy for hyperparameters and forbidden and
            # conditions!

            estimator_configuration_space = available_estimators[
                estimator_name]. \
                get_hyperparameter_search_space(dataset_properties)
            for parameter in estimator_configuration_space.get_hyperparameters():
                new_parameter = copy.deepcopy(parameter)
                new_parameter.name = "%s:%s" % (
                    estimator_name, new_parameter.name)
                cs.add_hyperparameter(new_parameter)
                # We must only add a condition if the hyperparameter is not
                # conditional on something else
                if len(estimator_configuration_space.
                        get_parents_of(parameter)) == 0:
                    condition = EqualsCondition(new_parameter, estimator,
                                                estimator_name)
                    cs.add_condition(condition)

            for condition in available_estimators[estimator_name]. \
                    get_hyperparameter_search_space(
                    dataset_properties).get_conditions():
                dlcs = condition.get_descendant_literal_conditions()
                for dlc in dlcs:
                    if not dlc.child.name.startswith(estimator_name):
                        dlc.child.name = "%s:%s" % (
                            estimator_name, dlc.child.name)
                    if not dlc.parent.name.startswith(estimator_name):
                        dlc.parent.name = "%s:%s" % (
                            estimator_name, dlc.parent.name)
                cs.add_condition(condition)

            for forbidden_clause in available_estimators[estimator_name]. \
                    get_hyperparameter_search_space(
                    dataset_properties).forbidden_clauses:
                dlcs = forbidden_clause.get_descendant_literal_clauses()
                for dlc in dlcs:
                    if not dlc.hyperparameter.name.startswith(estimator_name):
                        dlc.hyperparameter.name = "%s:%s" % (estimator_name,
                                                             dlc.hyperparameter.name)
                cs.add_forbidden_clause(forbidden_clause)

        return cs
Esempio n. 27
0
def get_hyperspace(data_info,
                   include_estimators=None, include_preprocessors=None):

    if data_info is None or not isinstance(data_info, dict):
        data_info = dict()

    if 'is_sparse' not in data_info:
        # This dataset is probaby dense
        data_info['is_sparse'] = False

    sparse = data_info['is_sparse']
    task_type = data_info['task']
    multilabel = (task_type == MULTILABEL_CLASSIFICATION)
    multiclass = (task_type == MULTICLASS_CLASSIFICATION)

    if task_type in CLASSIFICATION_TASKS:
        data_info['multilabel'] = multilabel
        data_info['multiclass'] = multiclass
        data_info['target_type'] = 'classification'
        pipe_type = 'classifier'

        # Components match to be forbidden
        components_ = ["adaboost", "decision_tree", "extra_trees",
                    "gradient_boosting", "k_nearest_neighbors",
                    "libsvm_svc", "random_forest", "gaussian_nb",
                    "decision_tree"]
        feature_learning_ = ["kitchen_sinks", "nystroem_sampler"]
    elif task_type in REGRESSION_TASKS:
        data_info['target_type'] = 'regression'
        pipe_type = 'regressor'

        # Components match to be forbidden
        components_ = ["adaboost", "decision_tree", "extra_trees",
                       "gaussian_process", "gradient_boosting",
                       "k_nearest_neighbors", "random_forest"]
        feature_learning_ = ["kitchen_sinks", "kernel_pca", "nystroem_sampler"]
    else:
        raise NotImplementedError()

    include, exclude = dict(), dict()
    if include_preprocessors is not None:
        include["preprocessor"] = include_preprocessors
    if include_estimators is not None:
        include[pipe_type] = include_estimators

    cs = ConfigurationSpace()

    # Construct pipeline
    # FIXME OrderedDIct?
    pipeline = get_pipeline(data_info['task'])

    # TODO include, exclude, pipeline
    keys = [pair[0] for pair in pipeline]
    for key in include:
        if key not in keys:
            raise ValueError('Invalid key in include: %s; should be one '
                             'of %s' % (key, keys))

    for key in exclude:
            if key not in keys:
                raise ValueError('Invalid key in exclude: %s; should be one '
                                 'of %s' % (key, keys))

    # Construct hyperspace
    # TODO What's the 'signed' stands for?
    if 'signed' not in data_info:
        # This dataset probably contains unsigned data
        data_info['signed'] = False

    match = check_pipeline(pipeline, data_info,
                           include=include, exclude=exclude)

    # Now we have only legal combinations at this step of the pipeline
    # Simple sanity checks
    assert np.sum(match) != 0, "No valid pipeline found."

    assert np.sum(match) <= np.size(match), \
        "'matches' is not binary; %s <= %d, %s" % \
        (str(np.sum(match)), np.size(match), str(match.shape))

    # Iterate each dimension of the matches array (each step of the
    # pipeline) to see if we can add a hyperparameter for that step
    for node_idx, n_ in enumerate(pipeline):
        node_name, node = n_
        is_choice = hasattr(node, "get_available_components")

        # if the node isn't a choice we can add it immediately because it
        #  must be active (if it wouldn't, np.sum(matches) would be zero
        if not is_choice:
            cs.add_configuration_space(node_name,
                node.get_hyperparameter_search_space(data_info))
        # If the node isn't a choice, we have to figure out which of it's
        #  choices are actually legal choices
        else:
            choices_list = find_active_choices(match, node, node_idx,data_info,
                                               include=include.get(node_name),
                                               exclude=exclude.get(node_name))
            cs.add_configuration_space(node_name,
                node.get_hyperparameter_search_space(data_info,
                                                     include=choices_list))
    # And now add forbidden parameter configurations
    # According to matches
    if np.sum(match) < np.size(match):
        cs = add_forbidden(conf_space=cs, pipeline=pipeline, matches=match,
                           dataset_properties=data_info, include=include, exclude=exclude)

    components = cs.get_hyperparameter('%s:__choice__' % pipe_type).choices
    availables = pipeline[-1][1].get_available_components(data_info)

    preprocessors = cs.get_hyperparameter('preprocessor:__choice__').choices
    #available_preprocessors = pipeline[-2][1].get_available_components(data_info)


    possible_default = copy.copy(list(availables.keys()))
    default = cs.get_hyperparameter('%s:__choice__' % pipe_type).default
    del possible_default[possible_default.index(default)]

    # A classifier which can handle sparse data after the densifier is
    # forbidden for memory issues
    for key in components:
        # TODO regression dataset_properties=None
        if SPARSE in availables[key].get_properties()['input']:
            if 'densifier' in preprocessors:
                while True:
                    try:
                        cs.add_forbidden_clause(
                            ForbiddenAndConjunction(
                                ForbiddenEqualsClause(
                                    cs.get_hyperparameter(
                                        '%s:__choice__' % pipe_type), key),
                                ForbiddenEqualsClause(
                                    cs.get_hyperparameter(
                                        'preprocessor:__choice__'), 'densifier')
                            ))
                        # Success
                        break
                    except ValueError:
                        # Change the default and try again
                        try:
                            default = possible_default.pop()
                        except IndexError:
                            raise ValueError("Cannot find a legal default configuration.")
                        cs.get_hyperparameter('%s:__choice__' % pipe_type).default = default

    # which would take too long
    # Combinations of non-linear models with feature learning:
    for c, f in itertools.product(components_, feature_learning_):
        if c not in components:
            continue
        if f not in preprocessors:
            continue
        while True:
            try:
                cs.add_forbidden_clause(ForbiddenAndConjunction(
                    ForbiddenEqualsClause(cs.get_hyperparameter(
                        "%s:__choice__" % pipe_type), c),
                    ForbiddenEqualsClause(cs.get_hyperparameter(
                        "preprocessor:__choice__"), f)))
                break
            except KeyError:
                break
            except ValueError as e:
                # Change the default and try again
                try:
                    default = possible_default.pop()
                except IndexError:
                    raise ValueError(
                        "Cannot find a legal default configuration.")
                cs.get_hyperparameter('%s:__choice__' % pipe_type).default = default


    if task_type in CLASSIFICATION_TASKS:
        # Won't work
        # Multinomial NB etc don't use with features learning, pca etc
        components_ = ["multinomial_nb"]
        preproc_with_negative_X = ["kitchen_sinks", "pca", "truncatedSVD",
                                   "fast_ica", "kernel_pca", "nystroem_sampler"]

        for c, f in itertools.product(components_, preproc_with_negative_X):
            if c not in components:
                continue
            if f not in preprocessors:
                continue
            while True:
                try:
                    cs.add_forbidden_clause(ForbiddenAndConjunction(
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "preprocessor:__choice__"), f),
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "classifier:__choice__"), c)))
                    break
                except KeyError:
                    break
                except ValueError:
                    # Change the default and try again
                    try:
                        default = possible_default.pop()
                    except IndexError:
                        raise ValueError(
                            "Cannot find a legal default configuration.")
                    cs.get_hyperparameter('classifier:__choice__').default = default

    return cs
Esempio n. 28
0
def read(pcs_string, debug=False):
    configuration_space = ConfigurationSpace()
    conditions = []
    forbidden = []

    # some statistics
    ct = 0
    cont_ct = 0
    cat_ct = 0
    line_ct = 0

    for line in pcs_string:
        line_ct += 1

        if "#" in line:
            # It contains a comment
            pos = line.find("#")
            line = line[:pos]

        # Remove quotes and whitespaces at beginning and end
        line = line.replace('"', "").replace("'", "")
        line = line.strip()

        if "|" in line:
            # It's a condition
            try:
                c = pp_condition.parseString(line)
                conditions.append(c)
            except pyparsing.ParseException:
                raise NotImplementedError("Could not parse condition: %s" %
                                          line)
            continue
        if "}" not in line and "]" not in line:
            continue
        if line.startswith("{") and line.endswith("}"):
            forbidden.append(line)
            continue
        if len(line.strip()) == 0:
            continue

        ct += 1
        param = None

        create = {
            "int": UniformIntegerHyperparameter,
            "float": UniformFloatHyperparameter,
            "categorical": CategoricalHyperparameter
        }

        try:
            param_list = pp_cont_param.parseString(line)
            il = param_list[9:]
            if len(il) > 0:
                il = il[0]
            param_list = param_list[:9]
            name = param_list[0]
            lower = float(param_list[2])
            upper = float(param_list[4])
            paramtype = "int" if "i" in il else "float"
            log = True if "l" in il else False
            default = float(param_list[7])
            param = create[paramtype](name=name,
                                      lower=lower,
                                      upper=upper,
                                      q=None,
                                      log=log,
                                      default=default)
            cont_ct += 1
        except pyparsing.ParseException:
            pass

        try:
            param_list = pp_cat_param.parseString(line)
            name = param_list[0]
            choices = [c for c in param_list[2:-4:2]]
            default = param_list[-2]
            param = create["categorical"](name=name,
                                          choices=choices,
                                          default=default)
            cat_ct += 1
        except pyparsing.ParseException:
            pass

        if param is None:
            raise NotImplementedError("Could not parse: %s" % line)

        configuration_space.add_hyperparameter(param)

    for clause in forbidden:
        # TODO test this properly!
        # TODO Add a try/catch here!
        # noinspection PyUnusedLocal
        param_list = pp_forbidden_clause.parseString(clause)
        tmp_list = []
        clause_list = []
        for value in param_list[1:]:
            if len(tmp_list) < 3:
                tmp_list.append(value)
            else:
                # So far, only equals is supported by SMAC
                if tmp_list[1] == '=':
                    # TODO maybe add a check if the hyperparameter is
                    # actually in the configuration space
                    clause_list.append(
                        ForbiddenEqualsClause(
                            configuration_space.get_hyperparameter(
                                tmp_list[0]), tmp_list[2]))
                else:
                    raise NotImplementedError()
                tmp_list = []
        configuration_space.add_forbidden_clause(
            ForbiddenAndConjunction(*clause_list))

    #Now handle conditions
    # If there are two conditions for one child, these two conditions are an
    # AND-conjunction of conditions, thus we have to connect them
    conditions_per_child = OrderedDict()
    for condition in conditions:
        child_name = condition[0]
        if child_name not in conditions_per_child:
            conditions_per_child[child_name] = list()
        conditions_per_child[child_name].append(condition)

    for child_name in conditions_per_child:
        condition_objects = []
        for condition in conditions_per_child[child_name]:
            child = configuration_space.get_hyperparameter(child_name)
            parent_name = condition[2]
            parent = configuration_space.get_hyperparameter(parent_name)
            restrictions = condition[5:-1:2]

            # TODO: cast the type of the restriction!
            if len(restrictions) == 1:
                condition = EqualsCondition(child, parent, restrictions[0])
            else:
                condition = InCondition(child, parent, values=restrictions)
            condition_objects.append(condition)

        # Now we have all condition objects for this child, so we can build a
        #  giant AND-conjunction of them (if number of conditions >= 2)!

        if len(condition_objects) > 1:
            and_conjunction = AndConjunction(*condition_objects)
            configuration_space.add_condition(and_conjunction)
        else:
            configuration_space.add_condition(condition_objects[0])

    return configuration_space
Esempio n. 29
0
def read(pcs_string, debug=False):
    """
    Reads in a :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
    definition from a pcs file.

    Example
    -------

    >>> from ConfigSpace.read_and_write import pcs_new
    >>> with open('configspace.pcs', 'r') as fh:
    >>>     restored_conf = pcs_new.read(fh)

    Parameters
    ----------
    pcs_string : str
        ConfigSpace definition in pcs format
    debug : bool
        Provides debug information. Defaults to False.

    Returns
    -------
    :py:class:`~ConfigSpace.configuration_space.ConfigurationSpace`
        The restored ConfigurationSpace object

    """
    configuration_space = ConfigurationSpace()
    conditions = []
    forbidden = []

    # some statistics
    ct = 0
    cont_ct = 0
    cat_ct = 0
    ord_ct = 0
    line_ct = 0

    for line in pcs_string:
        line_ct += 1

        if "#" in line:
            # It contains a comment
            pos = line.find("#")
            line = line[:pos]

        # Remove quotes and whitespaces at beginning and end
        line = line.replace('"', "").replace("'", "")
        line = line.strip()
        if "|" in line:
            # It's a condition
            try:
                c = pp_condition.parseString(line)
                conditions.append(c)
            except pyparsing.ParseException:
                raise NotImplementedError("Could not parse condition: %s" % line)
            continue
        if "}" not in line and "]" not in line:
            continue
        if line.startswith("{") and line.endswith("}"):
            forbidden.append(line)
            continue
        if len(line.strip()) == 0:
            continue

        ct += 1
        param = None

        create = {"int": UniformIntegerHyperparameter,
                  "float": UniformFloatHyperparameter,
                  "categorical": CategoricalHyperparameter,
                  "ordinal": OrdinalHyperparameter
                  }

        try:
            param_list = pp_cont_param.parseString(line)
            name = param_list[0]
            if param_list[1] == 'integer':
                paramtype = 'int'
            elif param_list[1] == 'real':
                paramtype = 'float'
            else:
                paramtype = None

            if paramtype in ['int', 'float']:
                log = param_list[10:]
                param_list = param_list[:10]
                if len(log) > 0:
                    log = log[0]
                lower = float(param_list[3])
                upper = float(param_list[5])
                log_on = True if "log" in log else False
                default_value = float(param_list[8])
                param = create[paramtype](name=name, lower=lower, upper=upper,
                                          q=None, log=log_on, default_value=default_value)
                cont_ct += 1

        except pyparsing.ParseException:
            pass

        try:
            if "categorical" in line:
                param_list = pp_cat_param.parseString(line)
                name = param_list[0]
                choices = [choice for choice in param_list[3:-4:2]]
                default_value = param_list[-2]
                param = create["categorical"](name=name, choices=choices, default_value=default_value)
                cat_ct += 1

            elif "ordinal" in line:
                param_list = pp_ord_param.parseString(line)
                name = param_list[0]
                sequence = [seq for seq in param_list[3:-4:2]]
                default_value = param_list[-2]
                param = create["ordinal"](name=name, sequence=sequence, default_value=default_value)
                ord_ct += 1

        except pyparsing.ParseException:
            pass

        if param is None:
            raise NotImplementedError("Could not parse: %s" % line)

        configuration_space.add_hyperparameter(param)

    for clause in forbidden:
        param_list = pp_forbidden_clause.parseString(clause)
        tmp_list = []
        clause_list = []
        for value in param_list[1:]:
            if len(tmp_list) < 3:
                tmp_list.append(value)
            else:
                # So far, only equals is supported by SMAC
                if tmp_list[1] == '=':
                    # TODO maybe add a check if the hyperparameter is
                    # actually in the configuration space
                    clause_list.append(ForbiddenEqualsClause(
                        configuration_space.get_hyperparameter(tmp_list[0]),
                        tmp_list[2]))
                else:
                    raise NotImplementedError()
                tmp_list = []
        configuration_space.add_forbidden_clause(ForbiddenAndConjunction(
            *clause_list))

    conditions_per_child = OrderedDict()
    for condition in conditions:
        child_name = condition[0]
        if child_name not in conditions_per_child:
            conditions_per_child[child_name] = list()
        conditions_per_child[child_name].append(condition)

    for child_name in conditions_per_child:
        for condition in conditions_per_child[child_name]:
            condition = condition[2:]
            condition = ' '.join(condition)
            if '||' in str(condition):
                ors = []
                # 1st case we have a mixture of || and &&
                if '&&' in str(condition):
                    ors_combis = []
                    for cond_parts in str(condition).split('||'):
                        condition = str(cond_parts).split('&&')
                        # if length is 1 it must be or
                        if len(condition) == 1:
                            element_list = condition[0].split()
                            ors_combis.append(condition_specification(child_name, element_list, configuration_space))
                        else:
                            # now taking care of ands
                            ands = []
                            for and_part in condition:
                                element_list = [element for part in condition for element in and_part.split()]
                                ands.append(condition_specification(child_name, element_list, configuration_space))
                            ors_combis.append(AndConjunction(*ands))
                    mixed_conjunction = OrConjunction(*ors_combis)
                    configuration_space.add_condition(mixed_conjunction)
                else:
                    # 2nd case: we only have ors
                    for cond_parts in str(condition).split('||'):
                        element_list = [element for element in cond_parts.split()]
                        ors.append(condition_specification(child_name, element_list, configuration_space))
                    or_conjunction = OrConjunction(*ors)
                    configuration_space.add_condition(or_conjunction)
            else:
                # 3rd case: we only have ands
                if '&&' in str(condition):
                    ands = []
                    for cond_parts in str(condition).split('&&'):
                        element_list = [element for element in cond_parts.split()]
                        ands.append(condition_specification(child_name, element_list, configuration_space))
                    and_conjunction = AndConjunction(*ands)
                    configuration_space.add_condition(and_conjunction)
                else:
                    # 4th case: we have a normal condition
                    element_list = [element for element in condition.split()]
                    normal_condition = condition_specification(child_name, element_list, configuration_space)
                    configuration_space.add_condition(normal_condition)

    return configuration_space
    def get_hyperparameter_search_space(**kwargs):
        cs = ConfigurationSpace()
        penalty = CategoricalHyperparameter("penalty", ["l1", "l2", "elasticnet", "none"], default_value='l2')
        solver = CategoricalHyperparameter("solver", ["newton-cg", "lbfgs", "liblinear", "sag", "saga"],
                                           default_value="lbfgs")
        dual = CategoricalHyperparameter("dual", choices=[True, False], default_value=False)
        tol = UniformFloatHyperparameter("tol", lower=1e-7, upper=100., default_value=1.0e-4, log=True)
        C = UniformFloatHyperparameter("C", lower=1e-7, upper=100., default_value=1.0, log=True)
        fit_intercept = CategoricalHyperparameter("fit_intercept", choices=[True, False], default_value=True)
        intercept_scaling = UniformFloatHyperparameter("intercept_scaling", lower=0.0001, upper=2.0, default_value=1.0,
                                                       log=True)
        max_iter = UniformIntegerHyperparameter("max_iter", lower=50, upper=10000, default_value=100)
        multi_class = CategoricalHyperparameter("multi_class", ["ovr", "multinomial", "auto"], default_value="auto")
        l1_ratio = UniformFloatHyperparameter("l1_ratio", lower=0., upper=1., default_value=0.1)

        l1_ratio_condition = InCondition(l1_ratio, penalty, ["elasticnet"])
        dual_condition = AndConjunction(InCondition(dual, penalty, ["l2"]), InCondition(dual, solver, ["liblinear"]))
        cs.add_hyperparameters([penalty, solver, dual, tol, C, fit_intercept, intercept_scaling, max_iter, multi_class,
                                l1_ratio])

        penaltyAndLbfgs = ForbiddenAndConjunction(
            ForbiddenEqualsClause(solver, "lbfgs"),
            ForbiddenInClause(penalty, ["l1", "elasticnet"])
        )
        penaltyAndNewton = ForbiddenAndConjunction(
            ForbiddenEqualsClause(solver, "newton-cg"),
            ForbiddenInClause(penalty, ["l1", "elasticnet"])
        )
        penaltyAndSag = ForbiddenAndConjunction(
            ForbiddenEqualsClause(solver, "sag"),
            ForbiddenInClause(penalty, ["l1", "elasticnet"])
        )
        penaltyAndSaga = ForbiddenAndConjunction(
            ForbiddenInClause(penalty, ["elasticnet"]),
            ForbiddenInClause(solver, ["newton-cg", "lbfgs", "sag"])
        )
        penaltyAndSagaa = ForbiddenAndConjunction(
            ForbiddenInClause(penalty, ["elasticnet", "none"]),
            ForbiddenInClause(solver, ["liblinear"])
        )
        penaltyAndSagaaa = ForbiddenAndConjunction(
            ForbiddenInClause(multi_class, ["multinomial"]),
            ForbiddenInClause(solver, ["liblinear"])
        )

        cs.add_forbidden_clause(penaltyAndLbfgs)
        cs.add_forbidden_clause(penaltyAndNewton)
        cs.add_forbidden_clause(penaltyAndSag)
        cs.add_forbidden_clause(penaltyAndSagaa)
        cs.add_forbidden_clause(penaltyAndSaga)
        cs.add_forbidden_clause(penaltyAndSagaaa)
        cs.add_condition(l1_ratio_condition)
        cs.add_condition(dual_condition)
        return cs
Esempio n. 31
0
    def get_hyperparameter_search_space(cls, include=None, exclude=None,
                                        dataset_properties=None):
        """Return the configuration space for the CASH problem.

        Parameters
        ----------
        include_estimators : list of str
            If include_estimators is given, only the regressors specified
            are used. Specify them by their module name; e.g., to include
            only the SVM use :python:`include_regressors=['svr']`.
            Cannot be used together with :python:`exclude_regressors`.

        exclude_estimators : list of str
            If exclude_estimators is given, only the regressors specified
            are used. Specify them by their module name; e.g., to include
            all regressors except the SVM use
            :python:`exclude_regressors=['svr']`.
            Cannot be used together with :python:`include_regressors`.

        include_preprocessors : list of str
            If include_preprocessors is given, only the preprocessors specified
            are used. Specify them by their module name; e.g., to include
            only the PCA use :python:`include_preprocessors=['pca']`.
            Cannot be used together with :python:`exclude_preprocessors`.

        exclude_preprocessors : list of str
            If include_preprocessors is given, only the preprocessors specified
            are used. Specify them by their module name; e.g., to include
            all preprocessors except the PCA use
            :python:`exclude_preprocessors=['pca']`.
            Cannot be used together with :python:`include_preprocessors`.

        Returns
        -------
        cs : ConfigSpace.configuration_space.Configuration
            The configuration space describing the SimpleRegressionClassifier.
        """
        cs = ConfigurationSpace()

        if dataset_properties is None or not isinstance(dataset_properties, dict):
            dataset_properties = dict()
        if not 'target_type' in dataset_properties:
            dataset_properties['target_type'] = 'regression'
        if dataset_properties['target_type'] != 'regression':
            dataset_properties['target_type'] = 'regression'

        if 'sparse' not in dataset_properties:
            # This dataset is probaby dense
            dataset_properties['sparse'] = False

        pipeline = cls._get_pipeline()
        cs = cls._get_hyperparameter_search_space(cs, dataset_properties,
                                                  exclude, include, pipeline)

        regressors = cs.get_hyperparameter('regressor:__choice__').choices
        preprocessors = cs.get_hyperparameter('preprocessor:__choice__').choices
        available_regressors = pipeline[-1][1].get_available_components(
            dataset_properties)
        available_preprocessors = pipeline[-2][1].get_available_components(
            dataset_properties)

        possible_default_regressor = copy.copy(list(
            available_regressors.keys()))
        default = cs.get_hyperparameter('regressor:__choice__').default
        del possible_default_regressor[
            possible_default_regressor.index(default)]

        # A regressor which can handle sparse data after the densifier
        for key in regressors:
            if SPARSE in available_regressors[key].get_properties(dataset_properties=None)['input']:
                if 'densifier' in preprocessors:
                    while True:
                        try:
                            cs.add_forbidden_clause(
                                ForbiddenAndConjunction(
                                    ForbiddenEqualsClause(
                                        cs.get_hyperparameter(
                                            'regressor:__choice__'), key),
                                    ForbiddenEqualsClause(
                                        cs.get_hyperparameter(
                                            'preprocessor:__choice__'), 'densifier')
                                ))
                            break
                        except ValueError:
                            # Change the default and try again
                            try:
                                default = possible_default_regressor.pop()
                            except IndexError:
                                raise ValueError(
                                    "Cannot find a legal default configuration.")
                            cs.get_hyperparameter(
                                'regressor:__choice__').default = default

        # which would take too long
        # Combinations of tree-based models with feature learning:
        regressors_ = ["adaboost", "decision_tree", "extra_trees",
                       "gaussian_process", "gradient_boosting",
                       "k_nearest_neighbors", "random_forest", "xgradient_boosting"]
        feature_learning_ = ["kitchen_sinks", "kernel_pca", "nystroem_sampler"]

        for r, f in product(regressors_, feature_learning_):
            if r not in regressors:
                continue
            if f not in preprocessors:
                continue
            while True:
                try:
                    cs.add_forbidden_clause(ForbiddenAndConjunction(
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "regressor:__choice__"), r),
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "preprocessor:__choice__"), f)))
                    break
                except KeyError:
                    break
                except ValueError:
                    # Change the default and try again
                    try:
                        default = possible_default_regressor.pop()
                    except IndexError:
                        raise ValueError(
                            "Cannot find a legal default configuration.")
                    cs.get_hyperparameter(
                        'regressor:__choice__').default = default

        return cs
Esempio n. 32
0
    def get_hyperparameter_search_space(cls, include=None, exclude=None,
                                        dataset_properties=None):
        """Create the hyperparameter configuration space.

        Parameters
        ----------
        include : dict (optional, default=None)

        Returns
        -------
        """
        cs = ConfigurationSpace()

        if dataset_properties is None or not isinstance(dataset_properties, dict):
            dataset_properties = dict()
        if not 'target_type' in dataset_properties:
            dataset_properties['target_type'] = 'classification'
        if dataset_properties['target_type'] != 'classification':
            dataset_properties['target_type'] = 'classification'

        pipeline = cls._get_pipeline()
        cs = cls._get_hyperparameter_search_space(cs, dataset_properties,
                                                  exclude, include, pipeline)

        classifiers = cs.get_hyperparameter('classifier:__choice__').choices
        preprocessors = cs.get_hyperparameter('preprocessor:__choice__').choices
        available_classifiers = pipeline[-1][1].get_available_components(
            dataset_properties)
        available_preprocessors = pipeline[-2][1].get_available_components(
            dataset_properties)

        possible_default_classifier = copy.copy(list(
            available_classifiers.keys()))
        default = cs.get_hyperparameter('classifier:__choice__').default
        del possible_default_classifier[possible_default_classifier.index(default)]

        # A classifier which can handle sparse data after the densifier is
        # forbidden for memory issues
        for key in classifiers:
            if SPARSE in available_classifiers[key].get_properties()['input']:
                if 'densifier' in preprocessors:
                    while True:
                        try:
                            cs.add_forbidden_clause(
                                ForbiddenAndConjunction(
                                    ForbiddenEqualsClause(
                                        cs.get_hyperparameter(
                                            'classifier:__choice__'), key),
                                    ForbiddenEqualsClause(
                                        cs.get_hyperparameter(
                                            'preprocessor:__choice__'), 'densifier')
                                ))
                            # Success
                            break
                        except ValueError:
                            # Change the default and try again
                            try:
                                default = possible_default_classifier.pop()
                            except IndexError:
                                raise ValueError("Cannot find a legal default configuration.")
                            cs.get_hyperparameter(
                                'classifier:__choice__').default = default

        # which would take too long
        # Combinations of non-linear models with feature learning:
        classifiers_ = ["adaboost", "decision_tree", "extra_trees",
                        "gradient_boosting", "k_nearest_neighbors",
                        "libsvm_svc", "random_forest", "gaussian_nb",
                        "decision_tree", "xgradient_boosting"]
        feature_learning = ["kitchen_sinks", "nystroem_sampler"]

        for c, f in product(classifiers_, feature_learning):
            if c not in classifiers:
                continue
            if f not in preprocessors:
                continue
            while True:
                try:
                    cs.add_forbidden_clause(ForbiddenAndConjunction(
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "classifier:__choice__"), c),
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "preprocessor:__choice__"), f)))
                    break
                except KeyError:
                    break
                except ValueError as e:
                    # Change the default and try again
                    try:
                        default = possible_default_classifier.pop()
                    except IndexError:
                        raise ValueError(
                            "Cannot find a legal default configuration.")
                    cs.get_hyperparameter(
                        'classifier:__choice__').default = default

        # Won't work
        # Multinomial NB etc don't use with features learning, pca etc
        classifiers_ = ["multinomial_nb"]
        preproc_with_negative_X = ["kitchen_sinks", "pca", "truncatedSVD",
                                   "fast_ica", "kernel_pca", "nystroem_sampler"]

        for c, f in product(classifiers_, preproc_with_negative_X):
            if c not in classifiers:
                continue
            if f not in preprocessors:
                continue
            while True:
                try:
                    cs.add_forbidden_clause(ForbiddenAndConjunction(
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "preprocessor:__choice__"), f),
                        ForbiddenEqualsClause(cs.get_hyperparameter(
                            "classifier:__choice__"), c)))
                    break
                except KeyError:
                    break
                except ValueError:
                    # Change the default and try again
                    try:
                        default = possible_default_classifier.pop()
                    except IndexError:
                        raise ValueError(
                            "Cannot find a legal default configuration.")
                    cs.get_hyperparameter(
                        'classifier:__choice__').default = default

        return cs