Esempio n. 1
0
s = C.convertArray2Tetra(s); s = T.join(s); s = P.exteriorFaces(s)
t = C.newPyTree(['Base']); t[2][1][2] = [a]
# Blanking
bodies = [[s]]
BM = N.array([[1]],N.int32)
t = X.blankCells(t,bodies,BM,blankingType='center_in')
t = X.setHoleInterpolatedPoints(t,depth=-2)
# Dist2Walls
t = DTW.distance2Walls(t,[s],type='ortho',loc='centers',signed=1)
t = C.center2Node(t,'centers:TurbulentDistance')
# Gradient de distance localise en centres => normales
t = P.computeGrad(t, 'TurbulentDistance')
t = I.initConst(t,MInf=0.2,loc='centers')
tc = C.node2Center(t)
t = X.setIBCData(t, tc, loc='centers', storage='direct')
no = 1
for bcType in xrange(4):
    for varType in xrange(1,4):
        t2 = X.setInterpTransfers(t,tc,bcType=bcType,varType=varType)
        test.testT(t2,no)
        no+=1

# Stockage inverse
Internal._rmNodesByName(t,"IBCD_*")
tc = X.setIBCData(t, tc, loc='centers', storage='inverse')
for bcType in xrange(4):
    for varType in xrange(1,4):
        X._setInterpTransfers(t,tc,bcType=bcType,varType=varType)
        test.testT(tc,no)
        no += 1
Esempio n. 2
0
def _eikonal(t, tc=None, loc='nodes', nitmax=10, err=0.01):
    MB = 1
    try:
        import Connector.PyTree as X
    except:
        MB = 0

    if tc is None or MB == 0:
        for z in Internal.getNodesFromType2(t, 'Zone_t'):
            _eikonalForZone(z, loc)
        return None

    # Eikonal
    nzones = len(Internal.getNodesFromType2(t, "Zone_t"))
    isConverged = [0] * nzones
    it = 0
    nocv = 0  # nb de zones convergees
    # calcul de la taille de maille sur le niveau le plus fin
    dhmin = PHIMAX
    for z in Internal.getNodesFromType2(t, "Zone_t"):
        dhmin = min(
            dhmin,
            C.getValue(z, 'CoordinateX', 1) - C.getValue(z, 'CoordinateX', 0))
    while nocv < nzones and it < nitmax + 1:
        print 'Iteration %d' % it
        # Eikonal sur les zones non convergees et sources
        if loc == 'nodes': C._initVars(t, 'PhiM={Phi}')
        else: C._initVars(t, 'centers:PhiM={centers:Phi}')
        no = 0
        for z in Internal.getNodesFromType2(t, "Zone_t"):
            if isConverged[no] < 1 and C.getMaxValue(z, loc + ':flag') > 0.:
                if loc == 'nodes':
                    C._initVars(
                        z, 'Phi=({flag}<0.1)*%f+({flag}>0.)*{Phi}' % PHIMAX)
                else:
                    C._initVars(
                        z,
                        'centers:Phi=({centers:flag}<0.1)*%f+({centers:flag}>0.)*{Phi}'
                        % PHIMAX)
                _eikonalForZone(z, loc=loc)
                isConverged[no] = -1
            no += 1
        # Synchro
        print 'Synchronization/transfers'
        if tc is not None:
            no = 0
            for z in Internal.getNodesFromType2(t, "Zone_t"):
                if isConverged[no] == -1:  # a ete eikonalise: transferts
                    z2 = Internal.getNodeFromName(tc, z[0])
                    C._cpVars(z, loc + ':Phi', z2, 'Phi')
                    C._initVars(z2, 'flag', 1.)
                    # PAS THREADE ?????
                    X._setInterpTransfers(t,
                                          z2,
                                          variables=['Phi', 'flag'],
                                          variablesIBC=None)
                no += 1

        # Convergence
        if it > 0:
            no = 0
            nocv = 0
            for z in Internal.getNodesFromType2(t, "Zone_t"):
                if loc == 'nodes':
                    C._initVars(
                        z, 'DPhi=abs({Phi}-{PhiM})/(maximum(1.e-12,{Phi}))')
                else:
                    C._initVars(
                        z,
                        'centers:DPhi=abs({centers:Phi}-{centers:PhiM})/(maximum(1.e-12,{centers:Phi}))'
                    )
                valmax = C.getMaxValue(z, loc + ':DPhi')
                dhloc = C.getValue(z, 'CoordinateX', 1) - C.getValue(
                    z, 'CoordinateX', 0)
                errloc = err * dhloc / dhmin  # on augmente la tolerance au fur et a mesure qu on diminue la resolution
                if valmax < errloc and isConverged[no] == -1:
                    isConverged[no] = 1
                    nocv += 1
                elif isConverged[no] == 1:
                    nocv += 1
                no += 1

        # Iteration
        it += 1
    #-----------------------------------------------------------------------------
    if it < nitmax + 1:
        print 'Distance by Eikonal converged after %d subiterations.' % it
    else:
        print 'Warning: distance by Eikonal did not converged after %d subiterations.' % nitmax
        noi = 0
        for i in isConverged:
            if i != 1: print i, noi
            noi += 1
    return None
Esempio n. 3
0
t = C.newPyTree(['Corps1', 'Corps2'])
t[2][1][2].append(a)
t[2][2][2].append(b)
t = X.connectMatch(t, dim=3)
C._fillEmptyBCWith(t, 'nref', 'BCFarfield', dim=3)
C._addState(t, 'EquationDimension', 3)
C._addVars(t, 'F')
C._initVars(t, 'centers:G', 1.)
t = X.applyBCOverlaps(t, depth=1)

tDnr = C.node2ExtCenter(t)
t1 = X.setInterpData(t, tDnr, sameName=1, loc='centers', storage='direct')

C._initVars(tDnr, '{F}={CoordinateX}*{CoordinateY}')
C._initVars(t1, '{centers:F}={centers:CoordinateX}*{centers:CoordinateY}')
X._setInterpTransfers(t1, tDnr, cellNVariable='', variables=['F'])
test.testT(t1, 0)
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='interpolated')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='extrapolated')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='orphan')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='cellRatio')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='donorAspect')
test.testT(t1, 1)
import sys
sys.exit()

tDnr = X.setInterpData(t, tDnr, sameName=1, loc='centers', storage='inverse')
t1 = X.getOversetInfo(t, tDnr, loc='centers', type='interpolated')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='extrapolated')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='orphan')
t1 = X.getOversetInfo(t1, tDnr, loc='centers', type='cellRatio')
Esempio n. 4
0
def transferCellN__(t, tc, DEPTH, loc):
    if tc is None: return t
    try:
        import Connector.PyTree as X
    except:
        raise ImportError(
            "Dist2Walls: Eikonal version requires Connector module.")
    # POINTS EXTERIEURS
    # Marquage des pts de front entre du 0 et du 1
    t = X.setHoleInterpolatedPoints(t, depth=DEPTH, loc=loc)
    # transfert du cellN aux raccords
    if tc is not None:
        C._cpVars(t, loc + ':cellN', tc, 'cellN')
        for zc in Internal.getNodesFromType2(tc, "Zone_t"):
            if C.getMaxValue(zc, 'cellN') == 2.:
                X._setInterpTransfers(t, zc, variables=["cellN"])
    if loc == 'nodes':
        C._initVars(t, "cellN=({cellN}>1.5)*2.+({cellN}>0.)*({cellN}<1.5)")
        C._initVars(t, 'cellN = 1-{cellN}+({cellN}>1.5)*3')
    else:
        C._initVars(
            t,
            "centers:cellN=({centers:cellN}>1.5)*2.+({centers:cellN}>0.)*({centers:cellN}<1.5)"
        )
        C._initVars(
            t, 'centers:cellN = 1-{centers:cellN}+({centers:cellN}>1.5)*3')
    t = X.setHoleInterpolatedPoints(t, depth=DEPTH, loc=loc)
    if loc == 'nodes':
        C._initVars(t, 'cellN = 1-{cellN}+({cellN}>1.5)*3')
        C._initVars(t, 'cellN2={cellN}')
    else:
        C._initVars(
            t, 'centers:cellN = 1-{centers:cellN}+({centers:cellN}>1.5)*3')
        C._initVars(t, 'centers:cellN2={centers:cellN}')

    # POINTS INTERIEURS
    if loc == 'nodes': C._initVars(t, 'cellN=minimum(1.,{cellN})')
    else: C._initVars(t, 'centers:cellN=minimum(1.,{centers:cellN})')

    t = X.setHoleInterpolatedPoints(t, depth=-DEPTH, loc=loc)
    # transfert du cellN aux raccords
    if tc is not None:
        C._cpVars(t, loc + ':cellN', tc, 'cellN')
        for zc in Internal.getNodesFromType2(tc, "Zone_t"):
            if C.getMaxValue(zc, 'cellN') == 2.:
                X._setInterpTransfers(t, zc, variables=["cellN"])
    if loc == 'nodes':
        C._initVars(t, "cellN=({cellN}>1.5)*2.+({cellN}>0.)*({cellN}<1.5)")
        C._initVars(t, 'cellN = 1-{cellN}+({cellN}>1.5)*3')
    else:
        C._initVars(
            t,
            "centers:cellN=({centers:cellN}>1.5)*2.+({centers:cellN}>0.)*({centers:cellN}<1.5)"
        )
        C._initVars(
            t, 'centers:cellN = 1-{centers:cellN}+({centers:cellN}>1.5)*3')
    t = X.setHoleInterpolatedPoints(t, depth=-DEPTH, loc=loc)
    if loc == 'nodes':
        C._initVars(t, 'cellN = 1-{cellN}+({cellN}>1.5)*3')
        C._initVars(t, 'cellN=maximum({cellN},{cellN2})')
        C._rmVars(t, ['cellN2'])
    else:
        C._initVars(
            t, 'centers:cellN = 1-{centers:cellN}+({centers:cellN}>1.5)*3')
        C._initVars(t,
                    'centers:cellN=maximum({centers:cellN},{centers:cellN2})')
        C._rmVars(t, ['centers:cellN2'])
    return t