def __init__(self, input_width, input_height, channel_number, learning_rate, cost_function): self.cost_function = cost_function self.predict_output_list = [] self.conv1 = ConvLayer(input_width, input_height, channel_number, 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv3 = MaxPoolingLayer(input_width, input_height, 16, 3, 3, 1, 2) self.conv4 = ConvLayer(input_width // 2, input_height // 2, 16, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv5 = MaxPoolingLayer(input_width // 2, input_height // 2, 32, 3, 3, 1, 2) self.conv6 = ConvLayer(input_width // 4, input_height // 4, 32, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv8 = UpsamplingLayer(input_width // 4, input_height // 4, 32) self.conv9 = ConvLayer(input_width // 2, input_height // 2, 32, 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv10 = UpsamplingLayer(input_width // 2, input_height // 2, 16) self.conv12 = ConvLayer(input_width, input_height, 16, 3, 3, 2, 1, 1, TanhActivator(), learning_rate)
class CryptoNet_fivelayer(Module): def __init__(self, in_dim, n_class): super(CryptoNet_fivelayer, self).__init__() self.conv = ConvLayer(in_dim, 5, 5,5, zero_padding=1, stride=2, method='SAME') self.sq1 = Activators.Square() self.fc1 = FullyConnect(845, 100) self.sq2 = Activators.Square() self.fc2 = FullyConnect(100, n_class) self.logsoftmax = Logsoftmax() def forward(self, x): in_size = x.shape[0] out_1 = self.sq1.forward(self.conv.forward(x)) self.conv_out_shape = out_1.shape # print('out1shape: ',self.conv_out_shape) out_1 = out_1.reshape(in_size, -1) # 将输出拉成一行 out_2 = self.sq2.forward(self.fc1.forward(out_1)) out_3 = self.fc2.forward(out_2) out_logsoftmax = self.logsoftmax.forward(out_3) return out_logsoftmax def backward(self, dy): dy_logsoftmax = self.logsoftmax.gradient(dy) dy_f3 = self.fc2.gradient(dy_logsoftmax) dy_f2 = self.fc1.gradient(self.sq2.gradient(dy_f3)) dy_f2 = dy_f2.reshape(self.conv_out_shape) self.conv.gradient(self.sq1.gradient(dy_f2))
def __init__(self, in_dim, n_class): super(CryptoNet_fivelayer, self).__init__() self.conv = ConvLayer(in_dim, 5, 5,5, zero_padding=1, stride=2, method='SAME') self.sq1 = Activators.Square() self.fc1 = FullyConnect(845, 100) self.sq2 = Activators.Square() self.fc2 = FullyConnect(100, n_class) self.logsoftmax = Logsoftmax()
def __init__(self, in_dim, n_class): super(Minionn_fivelayer, self).__init__() self.conv = ConvLayer(in_dim, 5, 5, 5, zero_padding=2, stride=2, method='SAME') self.relu1 = Activators.ReLU() self.fc1 = FullyConnect(980, 100) self.relu2 = Activators.ReLU() self.fc2 = FullyConnect(100, n_class) self.logsoftmax = Logsoftmax()
def Conv(filters, kernel_size, input_shape, strides=(1, 1), padding="VALID", activation='none'): return ConvLayer(filters, kernel_size, input_shape, strides, padding, activation)
def __init__(self, input_width, input_height, channel_number, learning_rate, cost_function): self.cost_function = cost_function self.predict_output_list = [] self.conv1 = ConvLayer(input_width, input_height, channel_number, 3, 3, 64, 1, 1, ReluActivator(), learning_rate) # self.conv2 = ConvLayer(input_width, input_height, 64, # 3, 3, 64, input_width // 2 + 1, 2, ReluActivator(), learning_rate) # self.conv2 = ConvLayer(input_width, input_height, 8, # 3, 3, 8, 1, 1, ReluActivator(), learning_rate) self.conv3 = MaxPoolingLayer(input_width, input_height, 64, 3, 3, 1, 2) # self.conv4 = ConvLayer(input_width, input_height, 16, # 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv5 = ConvLayer(input_width // 2, input_height // 2, 64, 3, 3, 128, 1, 1, ReluActivator(), learning_rate) self.conv6 = MaxPoolingLayer(input_width // 2, input_height // 2, 128, 3, 3, 1, 2) self.conv7 = ConvLayer(input_width // 4, input_height // 4, 128, 3, 3, 256, 1, 1, ReluActivator(), learning_rate) self.conv8 = UpsamplingLayer(input_width // 4, input_height // 4, 256, 3, 3, 128, 1, 1, learning_rate) self.conv9 = ConvLayer(input_width // 2, input_height // 2, 128, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv10 = UpsamplingLayer(input_width // 2, input_height // 2, 32, 3, 3, 32, 1, 1, learning_rate) # self.conv11 = ConvLayer(input_width, input_height, 8, # 3, 3, 4, 1, 1, ReluActivator(), learning_rate) self.conv12 = ConvLayer(input_width, input_height, 32, 3, 3, 2, 1, 1, NoneActivator(), learning_rate)
def __init__(self): super(Discriminator, self).__init__() # 输入1*28*28 MNIST # 1*28*28 -> 64*16*16 self.conv1 = ConvLayer(nc, ndf, 4, 4, zero_padding=1, stride=2, method='SAME', bias_required=False) self.lrelu1 = Activators.LeakyReLU(0.2) # 64*16*16 -> 128*8*8 self.conv2 = ConvLayer(ndf, ndf * 2, 4, 4, zero_padding=1, stride=2, method='SAME', bias_required=False) self.bn1 = BatchNorm(ndf * 2) self.lrelu2 = Activators.LeakyReLU(0.2) # 128*8*8 -> 256*4*4 self.conv3 = ConvLayer(ndf * 2, ndf * 4, 4, 4, zero_padding=1, stride=2, method='SAME', bias_required=False) self.bn2 = BatchNorm(ndf * 4) self.lrelu3 = Activators.LeakyReLU(0.2) # 256*4*4 -> 1*1 self.conv4 = ConvLayer(ndf * 4, 1, 4, 4, zero_padding=0, stride=1, method='VALID', bias_required=False) self.sigmoid = Activators.Sigmoid_CE()
class Discriminator(Module): def __init__(self): super(Discriminator, self).__init__() # 输入1*28*28 MNIST # 1*28*28 -> 64*16*16 self.conv1 = ConvLayer(nc, ndf, 4,4, zero_padding=1, stride=2,method='SAME', bias_required=False) self.lrelu1 = Activators.LeakyReLU(0.2) # 64*16*16 -> 128*8*8 self.conv2 = ConvLayer(ndf, ndf*2, 4,4, zero_padding=1, stride=2, method='SAME', bias_required=False) self.bn1 = BatchNorm(ndf*2) self.lrelu2 = Activators.LeakyReLU(0.2) # 128*8*8 -> 256*4*4 self.conv3 = ConvLayer(ndf*2, ndf*4, 4,4, zero_padding=1, stride=2, method='SAME', bias_required=False) self.bn2 = BatchNorm(ndf*4) self.lrelu3 = Activators.LeakyReLU(0.2) # 256*4*4 -> 1*1 self.conv4 = ConvLayer(ndf*4, 1, 4,4, zero_padding=0, stride=1, method='VALID', bias_required=False) self.sigmoid = Activators.Sigmoid_CE() def forward(self, x_input): l1 = self.lrelu1.forward(self.conv1.forward(x_input)) l2 = self.lrelu2.forward(self.bn1.forward(self.conv2.forward(l1))) l3 = self.lrelu3.forward(self.bn2.forward(self.conv3.forward(l2))) l4 = self.conv4.forward(l3) # print('D l1 shape: ',l1.shape) # print('D l2 shape: ',l2.shape) # print('D l3 shape: ',l3.shape) # print('D l4 shape: ',l4.shape) output_sigmoid = self.sigmoid.forward(l4) return output_sigmoid def backward(self, dy): # print('dy.shape: ', dy.shape) dy_sigmoid = self.sigmoid.gradient(dy) # print('dy_sigmoid.shape: ', dy_sigmoid.shape) dy_l4 = self.conv4.gradient(dy_sigmoid) dy_l3 = self.conv3.gradient(self.bn2.gradient(self.lrelu3.gradient(dy_l4))) dy_l2 = self.conv2.gradient(self.bn1.gradient(self.lrelu2.gradient(dy_l3))) dy_l1 = self.conv1.gradient(self.lrelu1.gradient(dy_l2)) # print('D_backward output shape: ',dy_l1.shape) return dy_l1
def __init__(self, in_dim, n_class): super(Lenet_numpy, self).__init__() self.conv1 = ConvLayer(in_dim, 6, 5,5, zero_padding=2, stride=1, method='SAME') self.conv2 = ConvLayer(6, 16, 5,5, zero_padding=0, stride=1, method='VALID') self.conv3 = ConvLayer(16, 120, 5,5, zero_padding=0, stride=1, method='VALID') self.maxpool1 = MaxPooling(pool_shape=(2,2), stride=(2,2)) self.maxpool2 = MaxPooling(pool_shape=(2,2), stride=(2,2)) self.relu1 = ReLU() self.relu2 = ReLU() self.relu3 = ReLU() self.relu4 = ReLU() self.fc1 = FullyConnect(120, 84) self.fc2 = FullyConnect(84, n_class) self.logsoftmax = Logsoftmax()
class Lenet_numpy(Module): def __init__(self, in_dim, n_class): super(Lenet_numpy, self).__init__() self.conv1 = ConvLayer(in_dim, 6, 5,5, zero_padding=2, stride=1, method='SAME') self.conv2 = ConvLayer(6, 16, 5,5, zero_padding=0, stride=1, method='VALID') self.conv3 = ConvLayer(16, 120, 5,5, zero_padding=0, stride=1, method='VALID') self.maxpool1 = MaxPooling(pool_shape=(2,2), stride=(2,2)) self.maxpool2 = MaxPooling(pool_shape=(2,2), stride=(2,2)) self.relu1 = ReLU() self.relu2 = ReLU() self.relu3 = ReLU() self.relu4 = ReLU() self.fc1 = FullyConnect(120, 84) self.fc2 = FullyConnect(84, n_class) self.logsoftmax = Logsoftmax() def forward(self, x): # 存在问题是:同一个对象其实是不能多次使用的,因为每个对象都有自己的input和output,如果重复使用反向会错误 in_size = x.shape[0] out_c1s2 = self.relu1.forward(self.maxpool1.forward(self.conv1.forward(x))) out_c3s4 = self.relu2.forward(self.maxpool2.forward(self.conv2.forward(out_c1s2))) out_c5 = self.relu3.forward(self.conv3.forward(out_c3s4)) self.conv_out_shape = out_c5.shape out_c5 = out_c5.reshape(in_size, -1) out_f6 = self.relu4.forward(self.fc1.forward(out_c5)) out_f7 = self.fc2.forward(out_f6) out_logsoftmax = self.logsoftmax.forward(out_f7) return out_logsoftmax def backward(self, dy): dy_logsoftmax = self.logsoftmax.gradient(dy) dy_f7 = self.fc2.gradient(dy_logsoftmax) dy_f6 = self.fc1.gradient(self.relu4.gradient(dy_f7)) dy_f6 = dy_f6.reshape(self.conv_out_shape) dy_c5 = self.conv3.gradient(self.relu3.gradient(dy_f6)) dy_c3f4 = self.conv2.gradient(self.maxpool2.gradient(self.relu2.gradient(dy_c5))) self.conv1.gradient(self.maxpool1.gradient(self.relu1.gradient(dy_c3f4)))
class CNN1(object): def __init__(self, input_width, input_height, channel_number, learning_rate, cost_function): self.cost_function = cost_function self.predict_output_list = [] self.conv1 = ConvLayer(input_width, input_height, channel_number, 3, 3, 64, 1, 1, ReluActivator(), learning_rate) # self.conv2 = ConvLayer(input_width, input_height, 64, # 3, 3, 64, input_width // 2 + 1, 2, ReluActivator(), learning_rate) # self.conv2 = ConvLayer(input_width, input_height, 8, # 3, 3, 8, 1, 1, ReluActivator(), learning_rate) self.conv3 = MaxPoolingLayer(input_width, input_height, 64, 3, 3, 1, 2) # self.conv4 = ConvLayer(input_width, input_height, 16, # 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv5 = ConvLayer(input_width // 2, input_height // 2, 64, 3, 3, 128, 1, 1, ReluActivator(), learning_rate) self.conv6 = MaxPoolingLayer(input_width // 2, input_height // 2, 128, 3, 3, 1, 2) self.conv7 = ConvLayer(input_width // 4, input_height // 4, 128, 3, 3, 256, 1, 1, ReluActivator(), learning_rate) self.conv8 = UpsamplingLayer(input_width // 4, input_height // 4, 256, 3, 3, 128, 1, 1, learning_rate) self.conv9 = ConvLayer(input_width // 2, input_height // 2, 128, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv10 = UpsamplingLayer(input_width // 2, input_height // 2, 32, 3, 3, 32, 1, 1, learning_rate) # self.conv11 = ConvLayer(input_width, input_height, 8, # 3, 3, 4, 1, 1, ReluActivator(), learning_rate) self.conv12 = ConvLayer(input_width, input_height, 32, 3, 3, 2, 1, 1, NoneActivator(), learning_rate) def train_forward(self, input_array, new_batch): if np.random.randint(2, size=1)[0] == 1 or new_batch == 1: self.input_array = input_array self.conv1.forward(input_array) self.conv1_output_array = self.conv1.output_array # self.conv2.forward(self.conv1_output_array) # self.conv2_output_array = self.conv2.output_array self.conv3.forward(self.conv1_output_array) self.conv3_output_array = self.conv3.output_array # self.conv4.forward(self.conv3_output_array) # self.conv4_output_array = self.conv4.output_array self.conv5.forward(self.conv3_output_array) self.conv5_output_array = self.conv5.output_array self.conv6.forward(self.conv5_output_array) self.conv6_output_array = self.conv6.output_array self.conv7.forward(self.conv6_output_array) self.conv7_output_array = self.conv7.output_array self.conv8.forward(self.conv7_output_array) self.conv8_output_array = self.conv8.output_array self.conv9.forward(self.conv8_output_array) self.conv9_output_array = self.conv9.output_array self.conv10.forward(self.conv9_output_array) self.conv10_output_array = self.conv10.output_array # self.conv11.forward(self.conv10_output_array) # self.conv11_output_array = self.conv11.output_array else: self.conv1.forward(input_array) # self.conv2.forward(self.conv1.output_array) self.conv3.forward(self.conv1.output_array) # self.conv4.forward(self.conv3.output_array) self.conv5.forward(self.conv3.output_array) self.conv6.forward(self.conv5.output_array) self.conv7.forward(self.conv6.output_array) self.conv8.forward(self.conv7.output_array) self.conv9.forward(self.conv8.output_array) self.conv10.forward(self.conv9.output_array) # self.conv11.forward(self.conv10.output_array) self.conv12.forward(self.conv10_output_array) if new_batch == 1: self.predict_output_list = [] self.predict_output_list.append(self.conv12.output_array) def train_backward(self, actual_output_list): delta_array = self.cost_function(actual_output_list, self.predict_output_list) self.conv12.backward(delta_array) print(1) # self.conv11.backward(self.conv12.delta_array) # print(2) self.conv10.backward(self.conv12.delta_array) print(3) self.conv9.backward(self.conv10.delta_array) print(4) self.conv8.backward(self.conv9.delta_array) print(5) self.conv7.backward(self.conv8.delta_array) print(6) self.conv6.backward(self.conv5_output_array, self.conv7.delta_array) print(7) self.conv5.backward(self.conv6.delta_array) print(8) # self.conv4.backward(self.conv5.delta_array) # print(9) self.conv3.backward(self.conv1_output_array, self.conv5.delta_array) print(10) # self.conv2.backward(self.conv3.delta_array) # print(11) self.conv1.update(self.input_array, self.conv3.delta_array) # self.conv2.update(self.conv1_output_array, self.conv3.delta_array) # self.conv3.update(self.conv1_output_array, self.conv5.delta_array) # self.conv4.update(self.conv3_output_array, self.conv5.delta_array) self.conv5.update(self.conv3_output_array, self.conv6.delta_array) # self.conv6.update(self.conv5_output_array, self.conv7.delta_array) self.conv7.update(self.conv6_output_array, self.conv8.delta_array) self.conv8.update(self.conv7_output_array, self.conv9.delta_array) self.conv9.update(self.conv8_output_array, self.conv10.delta_array) self.conv10.update(self.conv9_output_array, self.conv12.delta_array) # self.conv11.update(self.conv10_output_array, self.conv12.delta_array) self.conv12.update(self.conv10_output_array, delta_array) def output(self, input_array): self.conv1.forward(input_array) # self.conv2.forward(self.conv1.output_array) self.conv3.forward(self.conv1.output_array) # self.conv4.forward(self.conv3.output_array) self.conv5.forward(self.conv3.output_array) self.conv6.forward(self.conv5.output_array) self.conv7.forward(self.conv6.output_array) self.conv8.forward(self.conv7.output_array) self.conv9.forward(self.conv8.output_array) self.conv10.forward(self.conv9.output_array) # self.conv11.forward(self.conv10.output_array) self.conv12.forward(self.conv10_output_array) return self.conv12.output_array
def conv_test(): bit_length = 32 # (1,28,28)*(5,5,5) # x_numpy = np.random.randn(1,1,28,28).astype(np.float32) # w_numpy = np.random.randn(5,1,5,5).astype(np.float32) # b_numpy = np.random.randn(5).astype(np.float32) # # (1,28,28)*(5,5,5) # x_numpy_1 = np.random.randn(1,1,28,28).astype(np.float32) # x_numpy_2 = x_numpy-x_numpy_1 # w_numpy_1 = np.random.randn(5,1,5,5).astype(np.float32) # w_numpy_2 = w_numpy-w_numpy_1 # b_numpy_1 = np.random.randn(5).astype(np.float32) # b_numpy_2 = b_numpy-b_numpy_1 ## (3,32,32)*(64,2,2) # x_numpy = np.random.randn(1,3,32,32).astype(np.float32) # w_numpy = np.random.randn(64,3,2,2).astype(np.float32) # b_numpy = np.random.randn(64).astype(np.float32) # x = torch.tensor(x_numpy, requires_grad=True) # x_numpy_1 = np.random.randn(1,3,32,32).astype(np.float32) # x_numpy_2 = x_numpy-x_numpy_1 # w_numpy_1 = np.random.randn(64,3,2,2).astype(np.float32) # w_numpy_2 = w_numpy-w_numpy_1 # b_numpy_1 = np.random.randn(64).astype(np.float32) # b_numpy_2 = b_numpy-b_numpy_1 x_numpy = np.random.randn(1,32,32,32).astype(np.float32) w_numpy = np.random.randn(128,32,3,3).astype(np.float32) b_numpy = np.random.randn(128).astype(np.float32) x = torch.tensor(x_numpy, requires_grad=True) x_numpy_1 = np.random.randn(1,32,32,32).astype(np.float32) x_numpy_2 = x_numpy-x_numpy_1 w_numpy_1 = np.random.randn(128,32,3,3).astype(np.float32) w_numpy_2 = w_numpy-w_numpy_1 b_numpy_1 = np.random.randn(128).astype(np.float32) b_numpy_2 = b_numpy-b_numpy_1 print('input_shape: ', x_numpy.shape) print('w_shape: ', w_numpy.shape) # padding=0, stride=2 # cl1 = Conv_sec(1, 5, 5, 5, zero_padding=0, stride=2, method='SAME') # cl1 = Conv_sec(3, 64, 2, 2, zero_padding=0, stride=2, method='SAME') cl1 = Conv_sec(32, 128, 3, 3, zero_padding=0, stride=2, method='SAME') cl_ori = ConvLayer(1, 5, 5, 5, zero_padding=1, stride=2, method='SAME') cl_tensor = torch.nn.Conv2d(1, 5, kernel_size=5, stride=2, padding=1) ## 设置参数 cl_ori.set_weight(Parameter(w_numpy, requires_grad=True)) cl_ori.set_bias(Parameter(b_numpy, requires_grad=True)) cl1.set_weight_1(Parameter(w_numpy_1, requires_grad=True)) cl1.set_bias_1(Parameter(b_numpy_1, requires_grad=True)) cl1.set_weight_2(Parameter(w_numpy_2, requires_grad=True)) cl1.set_bias_2(Parameter(b_numpy_2, requires_grad=True)) # print('param_error: \n', w_numpy-(w_numpy_1+w_numpy_2)) # print('param_error: \n', cl_ori.weights.data-(cl1.weights_1.data+cl1.weights_2.data)) '''前向传播''' # start_time_tensor = time.time() # conv_out = cl_tensor(x) # end_time_tensor = time.time() # start_time = time.time() # conv_out = cl_ori.forward(x_numpy) # end_time = time.time() test_num = 10 time_avg = 0 for i in range(test_num): start_time_sec = time.time() conv_out_1, conv_out_2 = cl1.forward(x_numpy_1, x_numpy_2) end_time_sec = time.time() time_avg+=(end_time_sec-start_time_sec)*1000 print('time avg sec: \n', time_avg/test_num)
class CNN(object): def __init__(self, input_width, input_height, channel_number, learning_rate, cost_function): self.cost_function = cost_function self.predict_output_list = [] self.conv1 = ConvLayer(input_width, input_height, channel_number, 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv3 = MaxPoolingLayer(input_width, input_height, 16, 3, 3, 1, 2) self.conv4 = ConvLayer(input_width // 2, input_height // 2, 16, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv5 = MaxPoolingLayer(input_width // 2, input_height // 2, 32, 3, 3, 1, 2) self.conv6 = ConvLayer(input_width // 4, input_height // 4, 32, 3, 3, 32, 1, 1, ReluActivator(), learning_rate) self.conv8 = UpsamplingLayer(input_width // 4, input_height // 4, 32) self.conv9 = ConvLayer(input_width // 2, input_height // 2, 32, 3, 3, 16, 1, 1, ReluActivator(), learning_rate) self.conv10 = UpsamplingLayer(input_width // 2, input_height // 2, 16) self.conv12 = ConvLayer(input_width, input_height, 16, 3, 3, 2, 1, 1, TanhActivator(), learning_rate) def train_forward(self, input_array, new_batch): if np.random.randint(2, size=1)[0] == 1 or new_batch == 1: self.input_array = input_array self.conv1.forward(input_array) self.conv1_output_array = np.array(self.conv1.output_array) self.conv3.forward(self.conv1.output_array) self.conv3_output_array = np.array(self.conv3.output_array) self.conv4.forward(self.conv3.output_array) self.conv4_output_array = np.array(self.conv4.output_array) self.conv5.forward(self.conv4.output_array) self.conv5_output_array = np.array(self.conv5.output_array) self.conv6.forward(self.conv5.output_array) self.conv6_output_array = np.array(self.conv6.output_array) self.conv8.forward(self.conv6.output_array) self.conv8_output_array = np.array(self.conv8.output_array) self.conv9.forward(self.conv8.output_array) self.conv9_output_array = np.array(self.conv9.output_array) self.conv10.forward(self.conv9.output_array) self.conv10_output_array = np.array(self.conv10.output_array) else: self.conv1.forward(input_array) self.conv3.forward(self.conv1.output_array) self.conv4.forward(self.conv3.output_array) self.conv5.forward(self.conv4.output_array) self.conv6.forward(self.conv5.output_array) self.conv8.forward(self.conv6.output_array) self.conv9.forward(self.conv8.output_array) self.conv10.forward(self.conv9.output_array) self.conv12.forward(self.conv10.output_array) if new_batch == 1: self.predict_output_list = [] conv12_output_array = np.array(self.conv12.output_array) self.predict_output_list.append(conv12_output_array) def train_backward(self, actual_output_list): delta_array = self.cost_function(actual_output_list, self.predict_output_list) self.conv12.backward(delta_array) self.conv10.backward(self.conv12.delta_array) self.conv9.backward(self.conv10.delta_array) self.conv8.backward(self.conv9.delta_array) self.conv6.backward(self.conv8.delta_array) self.conv5.backward(self.conv4_output_array, self.conv6.delta_array) self.conv4.backward(self.conv5.delta_array) self.conv3.backward(self.conv1_output_array, self.conv4.delta_array) self.conv1.update(self.input_array, self.conv3.delta_array) self.conv4.update(self.conv3_output_array, self.conv5.delta_array) self.conv6.update(self.conv5_output_array, self.conv8.delta_array) self.conv9.update(self.conv8_output_array, self.conv10.delta_array) self.conv12.update(self.conv10_output_array, delta_array) def output(self, input_array): self.conv1.forward(input_array) self.conv3.forward(self.conv1.output_array) self.conv4.forward(self.conv3.output_array) self.conv5.forward(self.conv4.output_array) self.conv6.forward(self.conv5.output_array) self.conv8.forward(self.conv6.output_array) self.conv9.forward(self.conv8.output_array) self.conv10.forward(self.conv9.output_array) self.conv12.forward(self.conv10_output_array) return self.conv12.output_array def save(self, path): fo = open(path, "w") for filter in self.conv1.filters: for i in range(0, filter.weights.shape[0]): for j in range(0, filter.weights.shape[1]): for k in range(0, filter.weights.shape[2]): fo.write(str(filter.weights[i, j, k]) + ' ') fo.write(str(filter.bias) + '\n') for filter in self.conv4.filters: for i in range(0, filter.weights.shape[0]): for j in range(0, filter.weights.shape[1]): for k in range(0, filter.weights.shape[2]): fo.write(str(filter.weights[i, j, k]) + ' ') fo.write(str(filter.bias) + '\n') for filter in self.conv6.filters: for i in range(0, filter.weights.shape[0]): for j in range(0, filter.weights.shape[1]): for k in range(0, filter.weights.shape[2]): fo.write(str(filter.weights[i, j, k]) + ' ') fo.write(str(filter.bias) + '\n') for filter in self.conv9.filters: for i in range(0, filter.weights.shape[0]): for j in range(0, filter.weights.shape[1]): for k in range(0, filter.weights.shape[2]): fo.write(str(filter.weights[i, j, k]) + ' ') fo.write(str(filter.bias) + '\n') for filter in self.conv12.filters: for i in range(0, filter.weights.shape[0]): for j in range(0, filter.weights.shape[1]): for k in range(0, filter.weights.shape[2]): fo.write(str(filter.weights[i, j, k]) + ' ') fo.write(str(filter.bias) + '\n') fo.close() def load(self, path): fi = open(path, 'r') data = fi.readlines() for l in range(0, 16): para_list = data[l].split() for i in range(0, self.conv1.filters[l].weights.shape[0]): for j in range(0, self.conv1.filters[l].weights.shape[1]): for k in range(0, self.conv1.filters[l].weights.shape[2]): self.conv1.filters[l].weights[i, j, k] = float( para_list[i * 9 + j * 3 + k]) self.conv1.filters[l].bias = float(para_list[-1]) for l in range(16, 48): para_list = data[l].split() for i in range(0, self.conv4.filters[l - 16].weights.shape[0]): for j in range(0, self.conv4.filters[l - 16].weights.shape[1]): for k in range(0, self.conv4.filters[l - 16].weights.shape[2]): self.conv4.filters[l - 16].weights[i, j, k] = float( para_list[i * 9 + j * 3 + k]) self.conv4.filters[l - 16].bias = float(para_list[-1]) for l in range(48, 80): para_list = data[l].split() for i in range(0, self.conv6.filters[l - 16].weights.shape[0]): for j in range(0, self.conv6.filters[l - 16].weights.shape[1]): for k in range(0, self.conv6.filters[l - 16].weights.shape[2]): self.conv6.filters[l - 16].weights[i, j, k] = float( para_list[i * 9 + j * 3 + k]) self.conv6.filters[l - 16].bias = float(para_list[-1]) for l in range(80, 96): para_list = data[l].split() for i in range(0, self.conv9.filters[l - 80].weights.shape[0]): for j in range(0, self.conv9.filters[l - 80].weights.shape[1]): for k in range(0, self.conv9.filters[l - 80].weights.shape[2]): self.conv9.filters[l - 80].weights[i, j, k] = float( para_list[i * 9 + j * 3 + k]) self.conv9.filters[l - 80].bias = float(para_list[-1]) for l in range(96, 98): para_list = data[l].split() for i in range(0, self.conv12.filters[l - 96].weights.shape[0]): for j in range(0, self.conv12.filters[l - 96].weights.shape[1]): for k in range( 0, self.conv12.filters[l - 96].weights.shape[2]): self.conv12.filters[l - 96].weights[i, j, k] = float( para_list[i * 9 + j * 3 + k]) self.conv12.filters[l - 96].bias = float(para_list[-1])