Esempio n. 1
0
def test_cifar_convnet_error(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')
    try_set_default_device(cntk_device(device_id))

    base_path = prepare_CIFAR10_data()
    # change dir to locate data.zip correctly
    os.chdir(base_path)

    from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms
    set_fixed_random_seed(1)
    force_deterministic_algorithms()

    reader_train1 = create_reader(os.path.join(base_path, 'train_map.txt'),
                                  os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                  False)
    reader_test1 = create_reader(os.path.join(base_path, 'test_map.txt'),
                                 os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                 False)
    model1 = create_convnet_cifar10_model(num_classes=10)
    train_loss1 = train_model(reader_train1,
                              reader_test1,
                              model1,
                              epoch_size=128,
                              max_epochs=1)
Esempio n. 2
0
def test_cifar_convnet_error(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')
    set_default_device(cntk_device(device_id))

    base_path = prepare_CIFAR10_data()
    # change dir to locate data.zip correctly
    os.chdir(base_path)

    from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms
    set_fixed_random_seed(
        1
    )  # BUGBUG: has no effect at present  # TODO: remove debugging facilities once this all works
    #force_deterministic_algorithms()
    # TODO: do the above; they lead to slightly different results, so not doing it for now

    reader_train = create_reader(os.path.join(base_path, 'train_map.txt'),
                                 os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                 True)
    reader_test = create_reader(os.path.join(base_path, 'test_map.txt'),
                                os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                False)

    model = create_convnet_cifar10_model(num_classes=10)
    test_error = train_and_evaluate(reader_train,
                                    reader_test,
                                    model,
                                    epoch_size=256,
                                    max_epochs=1)
Esempio n. 3
0
def test_cifar_convnet_error(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')
    try_set_default_device(cntk_device(device_id))

    base_path = prepare_CIFAR10_data()
    # change dir to locate data.zip correctly
    os.chdir(base_path)

    from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms
    set_fixed_random_seed(1)
    force_deterministic_algorithms()

    reader_train = create_reader(os.path.join(base_path, 'train_map.txt'),
                                 os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                 False)
    reader_test = create_reader(os.path.join(base_path, 'test_map.txt'),
                                os.path.join(base_path, 'CIFAR-10_mean.xml'),
                                False)
    model = create_convnet_cifar10_model(num_classes=10)
    train_loss, metric = train_model(reader_train,
                                     reader_test,
                                     model,
                                     epoch_size=128,
                                     max_epochs=5)

    expected_loss_metric = (2.2963, 0.9062)
    assert np.allclose((train_loss, metric),
                       expected_loss_metric,
                       atol=TOLERANCE_ABSOLUTE)
def test_cifar_convnet_error(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')
    set_default_device(cntk_device(device_id))

    base_path = prepare_CIFAR10_data()
    # change dir to locate data.zip correctly
    os.chdir(base_path)

    from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms
    set_fixed_random_seed(1)  # BUGBUG: has no effect at present  # TODO: remove debugging facilities once this all works
    #force_deterministic_algorithms()
    # TODO: do the above; they lead to slightly different results, so not doing it for now

    reader_train = create_reader(os.path.join(base_path, 'train_map.txt'), os.path.join(base_path, 'CIFAR-10_mean.xml'), True)
    reader_test  = create_reader(os.path.join(base_path, 'test_map.txt'), os.path.join(base_path, 'CIFAR-10_mean.xml'), False)

    model = create_convnet_cifar10_model(num_classes=10)
    test_error = train_and_evaluate(reader_train, reader_test, model, epoch_size=256, max_epochs=1)
def create_conv_network():
    # Input variables denoting the features and label data
    feature_var = C.input_variable((num_channels, image_height, image_width))
    label_var = C.input_variable((num_classes))

    # apply model to input
    scaled_input = C.element_times(C.constant(0.00390625), feature_var)

    z = create_convnet_cifar10_model(num_classes)(scaled_input)

    # loss and metric
    ce = C.cross_entropy_with_softmax(z, label_var)
    pe = C.classification_error(z, label_var)

    C.logging.log_number_of_parameters(z) ; print()

    return {
        'feature': feature_var,
        'label': label_var,
        'ce' : ce,
        'pe' : pe,
        'output': z
    }
def create_conv_network():
    # Input variables denoting the features and label data
    feature_var = C.input_variable((num_channels, image_height, image_width))
    label_var = C.input_variable((num_classes))

    # apply model to input
    scaled_input = C.element_times(C.constant(0.00390625), feature_var)

    z = create_convnet_cifar10_model(num_classes)(scaled_input)

    # loss and metric
    ce = C.cross_entropy_with_softmax(z, label_var)
    pe = C.classification_error(z, label_var)

    C.logging.log_number_of_parameters(z) ; print()

    return {
        'feature': feature_var,
        'label': label_var,
        'ce' : ce,
        'pe' : pe,
        'output': z
    }