Esempio n. 1
0
def xi_proj_analytic(x, y, z, L, r_edges, ncomponents, proj_type, projfn=None, nthreads=24):
    mumax = 1.0
    nmubins = 1
    verbose = False # MAKE SURE THIS IS FALSE otherwise breaks
    periodic = True # Periodic must be true for analytic computation!
    _, dd_proj, _ = DDsmu(1, nthreads, r_edges, mumax, nmubins, x, y, z,
              proj_type=proj_type, ncomponents=ncomponents, projfn=projfn,
              boxsize=L, periodic=periodic)
    #dd_proj = np.random.rand(ncomponents)
    rmin = min(r_edges)
    rmax = max(r_edges)
    volume = float(L**3)
    #nrbins = len(r_edges)-1
    nd = len(x)

    # works up to 100 thru here
    # hangs up to 15 when through next line
    print(rmin, rmax, nd, volume, ncomponents, r_edges, proj_type, projfn)
    rr_ana, trr_ana = trr_analytic(rmin, rmax, nd, volume, ncomponents, proj_type, rbins=r_edges, projfn=projfn)
    print(rr_ana)

    rcont = np.linspace(rmin, rmax, 1000)
    numerator = dd_proj - rr_ana
    amps_periodic_ana = np.linalg.solve(trr_ana, numerator)
    #xi_periodic_ana = evaluate_xi(nrbins, amps_periodic_ana, len(rcont), rcont, nrbins, r_edges, proj_type, projfn=projfn)
    xi_periodic_ana = evaluate_xi(amps_periodic_ana, rcont, proj_type, rbins=r_edges, projfn=projfn)

    print("DD proj:", dd_proj)
    print(numerator)
    print(amps_periodic_ana)
    print("First 10 xi vals:", xi_periodic_ana[:10])
    return rcont, xi_periodic_ana, amps_periodic_ana
Esempio n. 2
0
def xi_proj_numeric(x, y, z, rx, ry, rz, rr_proj, trr_proj, L, r_edges, ncomponents, proj_type, projfn=None, weights=None, weights_r=None, weight_type=None, nthreads=24, periodic=True):
    mumax = 1.0
    nmubins = 1
    verbose = False # MAKE SURE THIS IS FALSE otherwise breaks

    print("computing dd...")
    _, dd_proj, _ = DDsmu(1, nthreads, r_edges, mumax, nmubins, x, y, z,
                proj_type=proj_type, ncomponents=ncomponents, projfn=projfn,
                boxsize=L, periodic=periodic,
                weights1=weights, weight_type=weight_type)
    print("DD proj:", dd_proj)


    print("computing dr...")
    _, dr_proj, _ = DDsmu(0, nthreads, r_edges, mumax, nmubins, x, y, z, 
                    X2=rx, Y2=ry, Z2=rz,
                    proj_type=proj_type, ncomponents=ncomponents, projfn=projfn,
                    boxsize=L, periodic=periodic,
                    weights1=weights, weights2=weights_r, weight_type=weight_type)
    print("DR proj:", dr_proj)

    nd = len(x)
    nr = len(rx)
    rmin = min(r_edges)
    rmax = max(r_edges)
    r_cont = np.linspace(rmin, rmax, 1000)
    amps = compute_amps(ncomponents, nd, nd, nr, nr, dd_proj, dr_proj, dr_proj, rr_proj, trr_proj)
    
    # for gradient, this will just return the tophat for now; we'll do the evaluation separately
    xi_proj = evaluate_xi(amps, r_cont, proj_type, rbins=r_edges, projfn=projfn)

    return r_cont, xi_proj, amps
    def run_estimator_analytic(self):
        # TODO: make that can pass rbins as None to DDsmu for e.g. generalr when dont need!
        _, dd_proj, _ = DDsmu(1,
                              self.nthreads,
                              self.rbins,
                              self.mumax,
                              self.nmubins,
                              self.x,
                              self.y,
                              self.z,
                              proj_type=self.proj_type,
                              nprojbins=self.nprojbins,
                              projfn=self.projfn,
                              verbose=self.verbose,
                              boxsize=self.boxsize,
                              periodic=self.periodic,
                              isa='fallback')

        volume = float(self.boxsize**3)
        rr_ana, qq_ana = qq_analytic(self.rmin,
                                     self.rmax,
                                     self.nd,
                                     volume,
                                     self.nprojbins,
                                     self.proj_type,
                                     rbins=self.rbins,
                                     projfn=self.projfn)

        numerator = dd_proj - rr_ana
        amps_periodic_ana = np.linalg.solve(qq_ana, numerator)
        print("AMPS:", amps_periodic_ana)
        xi_periodic_ana = evaluate_xi(amps_periodic_ana,
                                      self.rcont,
                                      self.proj_type,
                                      rbins=self.rbins,
                                      projfn=self.projfn)

        return xi_periodic_ana, amps_periodic_ana
Esempio n. 4
0
                                                rbins,
                                                ra_rand,
                                                dec_rand,
                                                z_rand,
                                                is_comoving_dist=True,
                                                proj_type=proj_type,
                                                nprojbins=nbins,
                                                verbose=verbose,
                                                weights1=weights_rand,
                                                weight_type=weight_type)

# In[7]:

amps = compute_amps(nbins, nd, nd, nr, nr, dd_proj, dr_proj, dr_proj, rr_proj,
                    qq_proj)
xi_proj = evaluate_xi(nbins, amps, len(rcont), rcont,
                      len(rbins) - 1, rbins, proj_type)

# ### Perform xi(s, mu) standard estimation

# In[8]:


def extract_counts(res, weight_type=None):
    counts = np.array([x[4] for x in res], dtype=float)
    if weight_type:
        weights = np.array([x[5] for x in res], dtype=float)
        counts *= weights
    return counts


# In[9]:
Esempio n. 5
0
def run_dr7_LRGs():

    print "Running corrfunc estimator on LRGs"

    #sample = 'Full'
    #DR = 7
    sample = 'ns'
    DR = 3
    nproc = 24
    frac = 1
    randfrac = 1

    #proj_type = 'tophat'
    #proj_type = 'piecewise'
    proj_type = 'generalr'
    proj_label = proj_type + '_fast'
    #projfn = "/home/users/ksf293/Corrfunc/utils/dcosmos.dat"
    #projfn = None
    #projfn = "/home/users/ksf293/vectorizedEstimator/tables/dcosmos.dat"
    projfn = "/home/users/ksf293/vectorizedEstimator/tables/dcosmos_norm.dat"
    #proj_type = 'dcosmo'
    #proj_label = proj_type+'_const'
    projtag = '_' + proj_label
    if randfrac == 1:
        randfractag = ''
    else:
        randfractag = '_rand' + str(randfrac)

    saveto = "../results/dcosmo/xis_dr{}_{}LRG_frac{}{}{}.npy".format(
        DR, sample, frac, randfractag, projtag)

    K = 14
    smin = 40
    smax = 180
    #K=2
    #smin = 5
    #smax = 15
    sbins = np.linspace(smin, smax, K + 1)
    sbinsavg = np.array(0.5 * (sbins[1:] + sbins[:-1]))
    print "bins:", sbins

    if proj_type == "tophat" or proj_type == "piecewise":
        nprojbins = len(sbins) - 1
    elif proj_type == "powerlaw":
        nprojbins = 5
    elif proj_type == "dcosmo":
        nprojbins = 3  #FOR NOW
    elif proj_type == "generalr":
        nprojbins = 3
    else:
        raise ValueError("Proj type {} not recognized".format(proj_type))
    print "nprojbins:", nprojbins

    datafn = '../data/DR{}-{}.ascii'.format(DR, sample)
    randfn = '../data/random-DR{}-{}.ascii'.format(DR, sample)

    print "Loading data..."
    data = pd.read_csv(datafn, index_col=0)
    rand = pd.read_csv(randfn, index_col=0)

    #saveto = None
    if DR == 7:
        cosmo = LambdaCDM(H0=70, Om0=0.25, Ode0=0.75)
    elif DR == 3:
        cosmo = LambdaCDM(H0=70, Om0=0.30, Ode0=0.70)
    else:
        raise ValueError("DR {} not recognized".format(DR))

    #check if need to return or in place
    utils.write_comoving_dist(data, datafn, cosmo)
    utils.write_comoving_dist(rand, randfn, cosmo)

    print 'ndata=', len(data.index)
    print 'nrand=', len(rand.index)

    #data = data.sample(frac=frac)
    #rand = rand.sample(frac=frac*randfrac)
    step = int(1 / frac)
    data = data[::step]
    rand = rand[::step]
    #data = data[:int(frac*len(data.index))]
    #rand = rand[:int(frac*len(rand.index))]
    nd = len(data.index)
    nr = len(rand.index)
    print 'ndata=', nd
    print 'nrand=', nr

    #weights_data = data['radial_weight']*data['fiber_coll_weight']
    #weights_rand = rand['radial_weight']
    weights_data = None
    weights_rand = None

    mumax = 1.0  #max of cosine

    ss = []
    xis = []
    labels = []
    counts = []
    aa = []

    print "Running corrfunc..."
    start = time.time()

    dcm_col = 'dcm_Om0-{:.2f}'.format(cosmo.Om0)
    data_cz = data[dcm_col].values
    rand_cz = rand[dcm_col].values
    res = corrfuncproj.counts_smu(data['ra'].values,
                                  data['dec'].values,
                                  data_cz,
                                  rand['ra'].values,
                                  rand['dec'].values,
                                  rand_cz,
                                  sbins,
                                  mumax,
                                  cosmo,
                                  nproc=nproc,
                                  weights_data=weights_data,
                                  weights_rand=weights_rand,
                                  comoving=True,
                                  proj_type=proj_type,
                                  nprojbins=nprojbins,
                                  projfn=projfn)
    print("Completed counts")

    dd, dr, rr, qq, dd_orig, dr_orig, rr_orig = res
    # Note: dr twice because cross-correlations will be possible
    amps = compute_amps(nprojbins, nd, nd, nr, nr, dd, dr, dr, rr, qq)
    print 'Computed amplitudes'

    amps = np.array(amps)
    svals = np.linspace(smin, smax, 300)
    #print "svals:",svals
    #svals = np.array(0.5*(sbins[1:]+sbins[:-1]))
    nsvals = len(svals)
    sbins = np.array(sbins)
    nsbins = len(sbins) - 1

    xi_proj = evaluate_xi(nprojbins,
                          amps,
                          nsvals,
                          svals,
                          nsbins,
                          sbins,
                          proj_type,
                          projfn=projfn)
    #print("xi:", xi_proj)
    end = time.time()
    print 'Time for dr7 {} LRGs, nd={} nr={}: {}'.format(
        sample, nd, nr, end - start)

    xi_orig = convert_3d_counts_to_cf(nd, nd, nr, nr, dd_orig, dr_orig,
                                      dr_orig, rr_orig)

    #print "savg:", sbinsavg
    #print "xi_orig", xi_orig
    #print "svals", svals
    #print "xi_proj", xi_proj

    ss.append(sbinsavg)
    xis.append(xi_orig)
    labels.append("orig")
    counts.append([dd_orig, dr_orig, rr_orig])
    aa.append(None)

    ss.append(svals)
    xis.append(xi_proj)
    labels.append(proj_label)
    counts.append([dd, dr, rr, qq])
    aa.append(amps)

    if saveto:
        print "Saving to {}".format(saveto)
        np.save(saveto, [ss, xis, labels, counts, aa])
Esempio n. 6
0
                x, y, z, X2=x_rand, Y2=y_rand, Z2=z_rand, 
                proj_type=proj_type, nprojbins=nbins, 
                verbose=verbose,
                weights1=weights, weights2=weights_rand, weight_type=weight_type, periodic=periodic)

_, rr_proj, qq_proj = DDsmu(1, nthreads, rbins, mumax, nmubins, x_rand, y_rand, z_rand,
                proj_type=proj_type, nprojbins=nbins,
                verbose=verbose,
                weights1=weights_rand, weight_type=weight_type, periodic=periodic)


# In[12]:


amps = compute_amps(nbins, nd, nd, nr, nr, dd_proj, dr_proj, dr_proj, rr_proj, qq_proj)
xi_proj = evaluate_xi(nbins, amps, len(rcont), rcont, len(rbins)-1, rbins, proj_type)


# In[ ]:





# In[ ]:





# ### Perform xi(s, mu) standard estimation
Esempio n. 7
0
def counts_proj(ra_data,
                dec_data,
                z_data,
                ra_rand,
                dec_rand,
                z_rand,
                rpbins,
                losmax,
                cosmo,
                nproc=1,
                weights_data=None,
                weights_rand=None,
                comoving=False):

    assert (len(ra_data) == len(dec_data) and len(ra_data) == len(z_data))
    assert (len(ra_rand) == len(dec_rand) and len(ra_rand) == len(z_rand))

    nd1 = len(ra_data)
    nr1 = len(ra_rand)
    nd2 = nd1
    nr2 = nr1
    print "counts proj"
    print "comoving:", comoving
    if comoving:
        print "To comoving:"
        zdf = pd.DataFrame(z_data)
        print min(z_data), max(z_data)
        z_data = zdf.apply(get_comoving_dist, args=(cosmo, ))[0].values
        print min(z_data), max(z_data)
        rzdf = pd.DataFrame(z_rand)
        print min(z_rand), max(z_rand)
        z_rand = rzdf.apply(get_comoving_dist, args=(cosmo, ))[0].values
        print min(z_rand), max(z_rand)

    if weights_data is None:
        weights_data = np.ones(nd1)
    if weights_rand is None:
        weights_rand = np.ones(nr1)

    cosmology = 1
    nthreads = nproc
    verbose = False
    weight_type = 'pair_product'
    output_rpavg = True
    isa = 'fallback'

    mumax = losmax
    nmubins = 1

    print 'test'

    # dd_res_corrfunc, dd_proj, dd_projt = s_mu_mocks(1, cosmology, nthreads, mumax, nmubins, rpbins, ra_data, dec_data, z_data,
    #                               weights1=weights_data, is_comoving_dist=comoving, verbose=verbose,
    #                               weight_type=weight_type, isa=isa)

    print 'Computing DD pairs'
    start = time.time()
    dd_res_corrfunc, dd_proj, dd_projt = DDsmu_mocks(1,
                                                     cosmology,
                                                     nthreads,
                                                     mumax,
                                                     nmubins,
                                                     rpbins,
                                                     ra_data,
                                                     dec_data,
                                                     z_data,
                                                     weights1=weights_data,
                                                     is_comoving_dist=comoving,
                                                     verbose=verbose,
                                                     weight_type=weight_type,
                                                     isa=isa)
    end = time.time()
    print "Time DD pairs:", end - start
    print "DD:", dd_proj
    print dd_res_corrfunc

    print 'Computing DR pairs'
    start = time.time()
    dr_res_corrfunc, dr_proj, dr_projt = DDsmu_mocks(0,
                                                     cosmology,
                                                     nthreads,
                                                     mumax,
                                                     nmubins,
                                                     rpbins,
                                                     ra_data,
                                                     dec_data,
                                                     z_data,
                                                     RA2=ra_rand,
                                                     DEC2=dec_rand,
                                                     CZ2=z_rand,
                                                     weights1=weights_data,
                                                     weights2=weights_rand,
                                                     is_comoving_dist=comoving,
                                                     verbose=verbose,
                                                     weight_type=weight_type,
                                                     isa=isa)
    end = time.time()
    print "Time DD pairs:", end - start
    print "DR:", dr_proj
    print dr_res_corrfunc

    print 'Computing RR pairs'
    start = time.time()
    rr_res_corrfunc, rr_proj, rr_projt = DDsmu_mocks(1,
                                                     cosmology,
                                                     nthreads,
                                                     mumax,
                                                     nmubins,
                                                     rpbins,
                                                     ra_rand,
                                                     dec_rand,
                                                     z_rand,
                                                     weights1=weights_rand,
                                                     is_comoving_dist=comoving,
                                                     verbose=verbose,
                                                     weight_type=weight_type,
                                                     isa=isa)
    end = time.time()
    print "Time RR pairs:", end - start
    print "RR:", rr_proj
    print "QQ:", rr_projt
    print rr_res_corrfunc

    # a = []
    # dd = dd_proj * 1. / (nd1 * nd2)
    # dr = dr_proj * 1. / (nd1 * nr2)
    # #TODO: allow cross-correlations
    # rd = dr_proj * 1. / (nd2 * nr1)
    # rr = rr_proj * 1. / (nr1 * nr2)
    # qq = rr_projt * 1. / (nr1 * nr2)
    #a.append(calc_amplitudes(dd, dr, rd, rr, qq))

    nprojbins = len(rpbins) - 1
    amps = compute_amps(nprojbins, nd1, nd2, nr1, nr2, dd_proj, dr_proj,
                        dr_proj, rr_proj, rr_projt)
    print 'Computed amplitudes'
    print amps
    print amps
    amps = np.array(amps)
    svals = np.array(0.5 * (rpbins[1:] + rpbins[:-1]))
    nsvals = len(svals)
    sbins = np.array(rpbins)
    nsbins = len(rpbins) - 1
    print nprojbins
    print amps
    print nsvals
    print svals
    print nsbins
    print sbins

    xi = evaluate_xi(nprojbins, amps, nsvals, svals, nsbins, sbins)

    print "Evaluated xi"
    print xi

    return dd_res_corrfunc, dr_res_corrfunc, rr_res_corrfunc, svals, xi, amps
Esempio n. 8
0
def main():
    print("Go!")
    nrealizations = 1
    L = 750
    #L = 450.0
    N = 1000  # number of points in mock
    cat_tag = 'cattest'

    proj = 'gradient'
    kwargs = {}
    binwidth = 10
    cf_tag = f"_{proj}_top_bw{binwidth}"

    #proj = 'tophat'
    #kwargs = {}
    #binwidth = 5
    #cf_tag = f"_{proj}_bw{binwidth}_anatest"

    #proj = None
    #kwargs = {}
    #binwidth = 10
    #cf_tag = f"_{proj}_bw{binwidth}"

    rmin = 40.0
    rmax = 60.0
    r_edges = np.arange(rmin, rmax + binwidth, binwidth)
    rmax = max(r_edges)
    nrbins = len(r_edges) - 1
    r_avg = 0.5 * (r_edges[1:] + r_edges[:-1])
    result_dir = '../results/results_lognormal{}'.format(cat_tag)
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)

    proj_type, nprojbins, projfn = get_proj_parameters(proj,
                                                       r_edges=r_edges,
                                                       cf_tag=cf_tag,
                                                       **kwargs)

    nthreads = 2

    for Nr in range(nrealizations):

        print(f"Realization {Nr}")
        save_fn = f'{result_dir}/cf{cf_tag}_rlz{Nr}.npy'

        # Generate cubic mock
        x = np.random.rand(N) * float(L)
        y = np.random.rand(N) * float(L)
        z = np.random.rand(N) * float(L)
        ones = np.ones(N)
        if proj_type == 'gradient':
            weights = np.array([ones, x, y, z])
        else:
            weights = ones

        # Generate random catalog
        randmult = 2
        Nr = N * randmult
        xr = np.random.rand(Nr) * float(L)
        yr = np.random.rand(Nr) * float(L)
        zr = np.random.rand(Nr) * float(L)
        ones = np.ones(Nr)
        if proj_type == 'gradient':
            weights_r = np.array([ones, xr, yr, zr])
        else:
            weights_r = ones

        print("Run DDsmu, {} basis".format(proj))
        nmubins = 1
        mumax = 1.0
        periodic = True
        verbose = True
        weight_type = 'pair_product_gradient'
        np.set_printoptions(precision=6)

        dd_res, dd_proj, _ = DDsmu(1,
                                   nthreads,
                                   r_edges,
                                   mumax,
                                   nmubins,
                                   x,
                                   y,
                                   z,
                                   weights1=weights,
                                   proj_type=proj_type,
                                   nprojbins=nprojbins,
                                   projfn=projfn,
                                   periodic=periodic,
                                   boxsize=L,
                                   verbose=verbose,
                                   weight_type=weight_type)
        print("DD:", np.array(dd_proj))

        dr_res, dr_proj, _ = DDsmu(0,
                                   nthreads,
                                   r_edges,
                                   mumax,
                                   nmubins,
                                   x,
                                   y,
                                   z,
                                   weights1=weights,
                                   X2=xr,
                                   Y2=yr,
                                   Z2=zr,
                                   weights2=weights_r,
                                   proj_type=proj_type,
                                   nprojbins=nprojbins,
                                   projfn=projfn,
                                   periodic=periodic,
                                   boxsize=L,
                                   verbose=verbose,
                                   weight_type=weight_type)
        print("DR:", np.array(dr_proj))

        rr_res, rr_proj, qq_proj = DDsmu(1,
                                         nthreads,
                                         r_edges,
                                         mumax,
                                         nmubins,
                                         xr,
                                         yr,
                                         zr,
                                         weights1=weights_r,
                                         proj_type=proj_type,
                                         nprojbins=nprojbins,
                                         projfn=projfn,
                                         periodic=periodic,
                                         boxsize=L,
                                         verbose=verbose,
                                         weight_type=weight_type)
        print("RR:", np.array(rr_proj))

        if proj_type is None:
            print(dd_res)
            continue

        amps = compute_amps(nprojbins, N, N, Nr, Nr, dd_proj, dr_proj, dr_proj,
                            rr_proj, qq_proj)
        print(amps)

        #weights1 = np.array([1.0, 325., 325., 325.])
        #weights2 = np.array([1.0, 325., 325., 325.])
        weights1 = np.array([1.0, 750., 750., 750.])
        weights2 = np.array([1.0, 750., 750., 750.])
        rcont = np.linspace(rmin, rmax, 10)

        #weights1=None
        #weights2=None
        #weight_type=None

        print(amps, rcont, proj_type, r_edges, projfn, weights1, weights2,
              weight_type)
        xi = evaluate_xi(amps,
                         rcont,
                         proj_type,
                         rbins=r_edges,
                         projfn=projfn,
                         weights1=weights1,
                         weights2=weights2,
                         weight_type=weight_type)
        # for now!
        print(xi)
        r = []
        xi = []
        extra_dict = {}
        np.save(save_fn, [r, xi, amps, proj, extra_dict])
    def run_estimator_numeric(self):

        _, dd_proj, _ = DDsmu(1,
                              self.nthreads,
                              self.rbins,
                              self.mumax,
                              self.nmubins,
                              self.x,
                              self.y,
                              self.z,
                              proj_type=self.proj_type,
                              nprojbins=self.nprojbins,
                              projfn=self.projfn,
                              verbose=self.verbose,
                              boxsize=self.boxsize,
                              periodic=self.periodic)

        _, dr_proj, _ = DDsmu(0,
                              self.nthreads,
                              self.rbins,
                              self.mumax,
                              self.nmubins,
                              self.x,
                              self.y,
                              self.z,
                              X2=self.x_rand,
                              Y2=self.y_rand,
                              Z2=self.z_rand,
                              proj_type=self.proj_type,
                              nprojbins=self.nprojbins,
                              projfn=self.projfn,
                              verbose=self.verbose,
                              boxsize=self.boxsize,
                              periodic=self.periodic)

        _, rr_proj, qq_proj = DDsmu(1,
                                    self.nthreads,
                                    self.rbins,
                                    self.mumax,
                                    self.nmubins,
                                    self.x_rand,
                                    self.y_rand,
                                    self.z_rand,
                                    proj_type=self.proj_type,
                                    nprojbins=self.nprojbins,
                                    projfn=self.projfn,
                                    verbose=self.verbose,
                                    boxsize=self.boxsize,
                                    periodic=self.periodic)

        print("nd nr", self.nd, self.nr)
        amps = compute_amps(self.nprojbins, self.nd, self.nd, self.nr, self.nr,
                            dd_proj, dr_proj, dr_proj, rr_proj, qq_proj)
        print("AMPS:", amps)
        xi_proj = evaluate_xi(self.nprojbins,
                              amps,
                              len(self.rcont),
                              self.rcont,
                              len(self.rbins) - 1,
                              self.rbins,
                              self.proj_type,
                              projfn=self.projfn)

        return xi_proj, amps
Esempio n. 10
0
def main():
    print("Go!")
    print(Corrfunc.__version__)
    print(Corrfunc.__file__)
    nrealizations = 1
    #L = 750
    L = 450.0
    N = 10000 # number of points in mock

    proj = 'spline'
    kwargs = {'order': 3}
    binwidth = 10
    cf_tag = f"_{proj}{kwargs['order']}_bw{binwidth}_bintest"

    #proj = 'tophat'
    #kwargs = {}
    #binwidth = 5
    #cf_tag = f"_{proj}_bw{binwidth}_basetest"

    #proj = None
    #kwargs = {}
    #binwidth = 10
    #cf_tag = f"_{proj}_bw{binwidth}"

    rmin = 40.0
    rmax = 150.0
    r_edges = np.arange(rmin, rmax+binwidth, binwidth)
    rmax = max(r_edges)
    r_avg = 0.5*(r_edges[1:]+r_edges[:-1])
    
    proj_type, nprojbins, projfn = get_proj_parameters(proj, r_edges=r_edges, cf_tag=cf_tag, **kwargs)

    nthreads = 24

    for Nr in range(nrealizations):
        print(f"Realization {Nr}")

        # Generate cubic mock
        x = np.random.rand(N)*float(L)
        y = np.random.rand(N)*float(L)
        z = np.random.rand(N)*float(L)
        pos = np.array([x, y, z]).T

        print("Run DDsmu, {} basis".format(proj))
        nmubins = 1
        mumax = 1.0
        periodic=True
        r_edges = None
        dd_res, dd_proj, _ = DDsmu(1, nthreads, r_edges, mumax, nmubins, x, y, z, proj_type=proj_type, nprojbins=nprojbins, projfn=projfn, periodic=periodic, boxsize=L, verbose=True)
        print("DD:", dd_proj)

        if proj_type is None:
            print(dd_res)
            continue

        print("Run trr_analytic")
        rmin = min(r_edges)
        rmax = max(r_edges)
        nd = len(x)
        volume = float(L**3)
        nrbins = len(r_edges)-1 
        rr_ana, trr_ana = trr_analytic(rmin, rmax, nd, volume, nprojbins, proj_type, rbins=r_edges, projfn=projfn)
        print("RR_ana:", rr_ana)

        print("Run evaluate_xi")
        rcont = np.linspace(rmin, rmax, 1000)
        numerator = dd_proj - rr_ana
        amps_periodic_ana = np.linalg.solve(trr_ana, numerator)
        print("amplitudes:", amps_periodic_ana)
        xi_periodic_ana = evaluate_xi(amps_periodic_ana, rcont, proj_type, rbins=r_edges, projfn=projfn)
        print("evaluate_xi done")
Esempio n. 11
0
x, y, z = read_lognormal_catalog(n='5e-5')
boxsize = 750.0
nd = len(x)
print("Read in lognormal catalog, number of data points:",nd)

rmin = 40.0
rmax = 150.0
nbins = 11
r_edges = np.linspace(rmin, rmax, nbins+1)

periodic = True
nthreads = 1
proj_type = 'tophat'
ncomponents = nbins
nmubins = 1
mumax = 1.0
dd_res, dd_proj, _ = DDsmu(1, nthreads, r_edges, mumax, nmubins, x, y, z, 
                           boxsize=boxsize, periodic=periodic, proj_type=proj_type, ncomponents=ncomponents)
print("Corrfunc result:", dd_res)
print("Smoothcorrfunc result:", dd_proj)

volume = boxsize**3
rr_ana, trr_ana = trr_analytic(rmin, rmax, nd, volume, ncomponents, proj_type, rbins=r_edges)

numerator = dd_proj - rr_ana
amps_ana, *_ = np.linalg.lstsq(trr_ana, numerator, rcond=None) # Use linalg.lstsq instead of actually computing inverse!
r_fine = np.linspace(rmin, rmax, 200)
xi_ana = evaluate_xi(amps_ana, r_fine, proj_type, rbins=r_edges)
print(xi_ana)
print("Successfully ran suave on lognormal mock!")