def verify(self, received_mac_tag): """Validate the *binary* authentication tag (MAC). The receiver invokes this method at the very end, to check if the associated data (if any) and the decrypted messages are valid. :param bytes/bytearray/memoryview received_mac_tag: This is the 16-byte *binary* MAC, as received from the sender. :Raises ValueError: if the MAC does not match. The message has been tampered with or the key is incorrect. """ if self.verify not in self._next: raise TypeError("verify() cannot be called" " when encrypting a message") self._next = (self.verify,) secret = get_random_bytes(16) self._compute_mac() mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def verify(self, received_mac_tag): """Validate the *binary* MAC tag. The caller invokes this function at the very end. This method checks if the decrypted message is indeed valid (that is, if the key is correct) and it has not been tampered with while in transit. :Parameters: received_mac_tag : byte string This is the *binary* MAC, as received from the sender. :Raises MacMismatchError: if the MAC does not match. The message has been tampered with or the key is incorrect. """ if self.verify not in self._next: raise TypeError("verify() cannot be called" " when encrypting a message") self._next = [self.verify] if not self._mac_tag: tag = bchr(0) * self.block_size for i in range(3): tag = strxor(tag, self._omac[i].digest()) self._mac_tag = tag[:self._mac_len] secret = get_random_bytes(16) mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def verify(self, received_mac_tag): """Validate the *binary* MAC tag. The caller invokes this function at the very end. This method checks if the decrypted message is indeed valid (that is, if the key is correct) and it has not been tampered with while in transit. :Parameters: received_mac_tag : bytes/bytearray/memoryview This is the *binary* MAC, as received from the sender. :Raises ValueError: if the MAC does not match. The message has been tampered with or the key is incorrect. """ if self.verify not in self._next: raise TypeError("verify() cannot be called" " when encrypting a message") self._next = [self.verify] if self._mac_tag is None: self._mac_tag = self._kdf.derive() secret = get_random_bytes(16) mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def verify(self, received_mac_tag): """Validate the *binary* MAC tag. Call this method after the final `decrypt` (the one with no arguments) to check if the message is authentic and valid. :Parameters: received_mac_tag : byte string This is the *binary* MAC, as received from the sender. :Raises ValueError: if the MAC does not match. The message has been tampered with or the key is incorrect. """ if self.verify not in self._next: raise TypeError("verify() cannot be called now for this cipher") assert(len(self._cache_P) == 0) self._next = [self.verify] if self._mac_tag is None: self._compute_mac_tag() secret = get_random_bytes(16) mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def testSignVerify(self): rng = Random.new().read key = RSA.generate(1024, rng) for hashmod in (MD2, MD5, SHA1, SHA224, SHA256, SHA384, SHA512, RIPEMD160): hobj = hashmod.new() hobj.update(b('blah blah blah')) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) # Blake2b has variable digest size for digest_bits in (160, 256, 384, 512): hobj = BLAKE2b.new(digest_bits=digest_bits) hobj.update(b("BLAKE2b supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) # Blake2s too for digest_bits in (128, 160, 224, 256): hobj = BLAKE2s.new(digest_bits=digest_bits) hobj.update(b("BLAKE2s supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature)
def verify(self, received_mac_tag): """Validate the *binary* MAC tag. The caller invokes this function at the very end. This method checks if the decrypted message is indeed valid (that is, if the key is correct) and it has not been tampered with while in transit. :Parameters: received_mac_tag : byte string This is the *binary* MAC, as received from the sender. :Raises ValueError: if the MAC does not match. The message has been tampered with or the key is incorrect. """ if self.verify not in self._next: raise TypeError("verify() cannot be called" " when encrypting a message") self._next = [self.verify] if not self._mac_tag: if self._assoc_len is None: self._start_ccm(assoc_len=self._signer.data_signed_so_far()) if self._msg_len is None: self._start_ccm(msg_len=0) # Both associated data and payload are concatenated with the least # number of zero bytes (possibly none) that align it to the # 16 byte boundary (A.2.2 and A.2.3) self._signer.zero_pad() # Step 8 in 6.1 (T xor MSB_Tlen(S_0)) self._mac_tag = strxor(self._signer.digest(), self._s_0)[:self._mac_len] secret = get_random_bytes(16) mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def verify(self, mac_tag): """Verify that a given **binary** MAC (computed by another party) is valid. :Parameters: mac_tag : byte string The expected MAC of the message. :Raises ValueError: if the MAC does not match. It means that the message has been tampered with or that the MAC key is incorrect. """ secret = get_random_bytes(16) mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=mac_tag) mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=self.digest()) if mac1.digest() != mac2.digest(): raise ValueError("MAC check failed")
def runTest(self): key = RSA.generate(1024) signer = pkcs1_15.new(key) hash_names = ("MD2", "MD4", "MD5", "RIPEMD160", "SHA1", "SHA224", "SHA256", "SHA384", "SHA512", "SHA3_224", "SHA3_256", "SHA3_384", "SHA3_512") for name in hash_names: hashed = load_hash_by_name(name).new(b("Test")) signer.sign(hashed) from Crypto.Hash import BLAKE2b, BLAKE2s for hash_size in (20, 32, 48, 64): hashed_b = BLAKE2b.new(digest_bytes=hash_size, data=b("Test")) signer.sign(hashed_b) for hash_size in (16, 20, 28, 32): hashed_s = BLAKE2s.new(digest_bytes=hash_size, data=b("Test")) signer.sign(hashed_s)
def blake_2s(self, bits: int = 256, key: bytes = ""): """Get Blake-2s hash Performs BLAKE2s hashing on the input. BLAKE2s is a flavour of the BLAKE cryptographic hash function that is optimized for 8- to 32-bit platforms and produces digests of any size between 1 and 32 bytes. Supports the use of an optional key. Args: bits (int, optional): Number of digest bits, by default 256 key (bytes, optional): Encryption secret key, by default '' Returns: Chepy: The Chepy object. Examples: >>> Chepy("A").blake_2s(bits=128, key="key").output "4e33cc702e9d08c28a5e9691f23bc66a" """ assert bits in [256, 160, 128], "Valid bits are 256, 160, 128" h = BLAKE2s.new(digest_bits=bits, key=key.encode()) h.update(self._convert_to_bytes()) self.state = h.hexdigest() return self
############################ # Method 1: Using SHA 256 to Hash the file: from Crypto.Hash import SHA256 hash_M1 = SHA256.new(data=content) print(hash_M1.digest()) # b'\xf6\xddpY\xae\xb4R\xe6Hl\xc0W]Y]V?@y\x1fBL\xf3GS\xb6\xbc\x0e\xacax2' print(hash_M1.hexdigest()) # f6dd7059aeb452e6486cc0575d595d563f40791f424cf34753b6bc0eac617832 # source: https://pycryptodome.readthedocs.io/en/latest/src/hash/sha256.html # source: https://nitratine.net/blog/post/how-to-hash-files-in-python/ # Method 2: Using BLAKE2S to Hash the file: from Crypto.Hash import BLAKE2s hash_M2 = BLAKE2s.new(digest_bits=256) hash_M2.update(content) print(hash_M2.digest()) # b'\xa6\xd4\xd9c\x80mP\xd1\x88\xbd[\xbcm\xebYr{\xb9\x1fU\x0b\xdf\x9bc\xaf\x05\x80\xef8\x92\xa1\x81' print(hash_M2.hexdigest()) # a6d4d963806d50d188bd5bbc6deb59727bb91f550bdf9b63af0580ef3892a181 # source: https://pycryptodome.readthedocs.io/en/latest/src/hash/blake2s.html # source: https://nitratine.net/blog/post/how-to-hash-files-in-python/ ################################ ### PART 2 - DATA ENCRYPTION ### ################################ # Method 1: Encrypting using AES (CBC): from Crypto.Cipher import AES
def __init__(self): self.hasher = BLAKE2s.new(digest_bits=256)
def new(data=None): return BLAKE2s.new(digest_bits=256, data=data)
def testSignVerify(self): h = SHA1.new() h.update(b('blah blah blah')) class RNG(object): def __init__(self): self.asked = 0 def __call__(self, N): self.asked += N return Random.get_random_bytes(N) key = RSA.generate(1024) # Helper function to monitor what's request from MGF global mgfcalls def newMGF(seed,maskLen): global mgfcalls mgfcalls += 1 return bchr(0x00)*maskLen # Verify that PSS is friendly to all hashes for hashmod in (MD2,MD5,SHA1,SHA224,SHA256,SHA384,RIPEMD160): h = hashmod.new() h.update(b('blah blah blah')) # Verify that sign() asks for as many random bytes # as the hash output size rng = RNG() signer = PKCS.new(key, randfunc=rng) s = signer.sign(h) signer.verify(h, s) self.assertEqual(rng.asked, h.digest_size) # Blake2b has variable digest size for digest_bits in (160, 256, 384): # 512 is too long hobj = BLAKE2b.new(digest_bits=digest_bits) hobj.update(b("BLAKE2b supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) # Blake2s too for digest_bits in (128, 160, 224, 256): hobj = BLAKE2s.new(digest_bits=digest_bits) hobj.update(b("BLAKE2s supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) h = SHA1.new() h.update(b('blah blah blah')) # Verify that sign() uses a different salt length for sLen in (0,3,21): rng = RNG() signer = PKCS.new(key, saltLen=sLen, randfunc=rng) s = signer.sign(h) self.assertEqual(rng.asked, sLen) signer.verify(h, s) # Verify that sign() uses the custom MGF mgfcalls = 0 signer = PKCS.new(key, newMGF) s = signer.sign(h) self.assertEqual(mgfcalls, 1) signer.verify(h, s) # Verify that sign() does not call the RNG # when salt length is 0, even when a new MGF is provided key.asked = 0 mgfcalls = 0 signer = PKCS.new(key, newMGF, 0) s = signer.sign(h) self.assertEqual(key.asked,0) self.assertEqual(mgfcalls, 1) signer.verify(h, s)
def testSignVerify(self): h = SHA1.new() h.update(b('blah blah blah')) class RNG(object): def __init__(self): self.asked = 0 def __call__(self, N): self.asked += N return Random.get_random_bytes(N) key = RSA.generate(1024) # Helper function to monitor what's request from MGF global mgfcalls def newMGF(seed, maskLen): global mgfcalls mgfcalls += 1 return bchr(0x00) * maskLen # Verify that PSS is friendly to all hashes for hashmod in (MD2, MD5, SHA1, SHA224, SHA256, SHA384, RIPEMD160): h = hashmod.new() h.update(b('blah blah blah')) # Verify that sign() asks for as many random bytes # as the hash output size rng = RNG() signer = PKCS.new(key, randfunc=rng) s = signer.sign(h) signer.verify(h, s) self.assertEqual(rng.asked, h.digest_size) # Blake2b has variable digest size for digest_bits in (160, 256, 384): # 512 is too long hobj = BLAKE2b.new(digest_bits=digest_bits) hobj.update(b("BLAKE2b supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) # Blake2s too for digest_bits in (128, 160, 224, 256): hobj = BLAKE2s.new(digest_bits=digest_bits) hobj.update(b("BLAKE2s supports several digest sizes")) signer = PKCS.new(key) signature = signer.sign(hobj) signer.verify(hobj, signature) h = SHA1.new() h.update(b('blah blah blah')) # Verify that sign() uses a different salt length for sLen in (0, 3, 21): rng = RNG() signer = PKCS.new(key, saltLen=sLen, randfunc=rng) s = signer.sign(h) self.assertEqual(rng.asked, sLen) signer.verify(h, s) # Verify that sign() uses the custom MGF mgfcalls = 0 signer = PKCS.new(key, newMGF) s = signer.sign(h) self.assertEqual(mgfcalls, 1) signer.verify(h, s) # Verify that sign() does not call the RNG # when salt length is 0, even when a new MGF is provided key.asked = 0 mgfcalls = 0 signer = PKCS.new(key, newMGF, 0) s = signer.sign(h) self.assertEqual(key.asked, 0) self.assertEqual(mgfcalls, 1) signer.verify(h, s)
def _generate_cipher(secret: str): # Generate initial vector from hash of ENCRYPT_SECRET_KEY. iv = BLAKE2s.new(digest_bits=128).update(secret).digest() return AES.new(secret, AES.MODE_CBC, iv)