Esempio n. 1
0
    def initialize_model(self, ae_weights=None, gamma=0.1, optimizer='adam'):
        if ae_weights is not None:
            self.autoencoder.load_weights(ae_weights)
            print
            'Pretrained AE weights are loaded successfully.'
        else:
            print
            'ae_weights must be given. E.g.'
            print
            '    python IDEC.py mnist --ae_weights weights.h5'
            exit()

        hidden = self.autoencoder.get_layer(name='encoder_%d' %
                                            (self.n_stacks - 1)).output
        self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)

        # prepare IDEC model
        clustering_layer = ClusteringLayer(self.n_clusters,
                                           name='clustering')(hidden)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])
        self.model.compile(loss={
            'clustering': 'kld',
            'decoder_0': 'mse'
        },
                           loss_weights=[gamma, 1],
                           optimizer=optimizer)
Esempio n. 2
0
    def __init__(self,
                 dims,
                 gamma=0.1,
                 n_clusters=10,
                 alpha=1.0,
                 bn=True,
                 init='glorot_uniform'):

        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        if bn:
            self.autoencoder, self.encoder = autoencoder_bn(self.dims,
                                                            init=init)
        else:
            self.autoencoder, self.encoder = autoencoder(self.dims, init=init)
        # prepare DEC model
        clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(
            self.encoder.output)
        # reconstruct = Add()(self.autoencoder.output)
        # clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(reconstruct)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer] +
                           self.autoencoder.output)
Esempio n. 3
0
    def __init__(self,
                 dims,
                 gamma=0.1,
                 n_clusters=10,
                 alpha=1.0,
                 bn=False,
                 init='glorot_uniform'):

        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        # Fine-tuning
        print('Fine-tuning')
        self.autoencoder = Sequential()
        self.encoder = Sequential()
        for encoder in trained_encoders:
            self.autoencoder.add(encoder)
            self.encoder.add(encoder)
        for decoder in trained_decoders:
            self.autoencoder.add(decoder)
        # prepare DEC model
        clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(
            self.encoder.output)
        # reconstruct = Add()(self.autoencoder.output)
        # clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(reconstruct)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])
Esempio n. 4
0
    def initialize(self, X, save_autoencoder=False, **kwargs):
        if self.pretrained_weights is None:
            print 'Training autoencoder.'
            self.autoencoder.fit(X, X, batch_size=self.batch_size, **kwargs)
            if save_autoencoder:
                self.autoencoder.save_weights('autoencoder.h5')
        else:
            print 'Loading pretrained weights for autoencoder.'
            self.autoencoder.load_weights(self.pretrained_weights)

        # update encoder, decoder
        for i in range(len(self.encoder.layers)):
            self.encoder.layers[i].set_weights(
                self.autoencoder.layers[i].get_weights())

        # initialize cluster centres using k-means
        print 'Initializing cluster centres with k-means.'
        if self.cluster_centres is None:
            kmeans = KMeans(n_clusters=self.n_clusters, n_init=50)
            self.y_pred = kmeans.fit_predict(self.encoder.predict(X))
            self.cluster_centres = kmeans.cluster_centers_

        # prepare DEC model
        self.DEC = Model(input=self.input_layer,
                         output=ClusteringLayer(self.n_clusters,
                                                weights=self.cluster_centres,
                                                name='clustering')(
                                                    self.encoded))
        self.DEC.compile(loss='kullback_leibler_divergence',
                         optimizer='adadelta')
        return
Esempio n. 5
0
    def __init__(self, dims, n_clusters=4, alpha=1.0):

        super(IDEC, self).__init__()

        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        self.autoencoder = autoencoder(self.dims)
        hidden = self.autoencoder.get_layer(name='encoder_%d' %
                                            (self.n_stacks - 1)).output
        self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)

        # prepare IDEC model
        clustering_layer = ClusteringLayer(self.n_clusters,
                                           alpha=self.alpha,
                                           name='clustering')(hidden)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])

        self.pretrained = False
        self.centers = []
        self.y_pred = []
Esempio n. 6
0
    def initialize_model(self, x, gamma=0.1, optimizer='adam'):
        self.autoencoder.compile(loss='mse', optimizer=optimizer)  # SGD(lr=0.01, momentum=0.9),
        self.autoencoder.fit(x, x, batch_size=self.batch_size, epochs=self.pretrain_epochs)

        hidden = self.autoencoder.get_layer(name='encoder_%d' % (self.n_stacks - 1)).output
        self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)

        # prepare IDEC model
        clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(hidden)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])
        self.model.compile(loss={'clustering': 'kld', 'decoder_0': 'mse'},
                           loss_weights=[gamma, 1],
                           optimizer=optimizer)
Esempio n. 7
0
    def initialize_model(self, ae_weights=None, gamma=0.1, optimizer='adam'):
        if ae_weights is not None:
            self.autoencoder.load_weights(ae_weights)
            print('Pretrained AE weights are loaded successfully.')
        else:
            print(
                'ae_weights must be given by adding path to arguments e.g. : --ae_weights weights.h5'
            )
            exit()

        ml_penalty, cl_penalty = 0.1, 1
        cst_optimizer = 'adam'
        if self.classifier_name == 'mlp':
            hidden = self.autoencoder.get_layer(name='encoder_%d' %
                                                (self.n_stacks - 1)).output
            decoder_layer = 'decoder_0'
        else:
            hidden = self.autoencoder.get_layer(name='encoder_d_%d' %
                                                (self.d_stacks)).output
            decoder_layer = 'lambda_o_0'

        self.encoder = Model(inputs=self.autoencoder.input, outputs=hidden)

        clustering_layer = ClusteringLayer(self.n_clusters,
                                           name='clustering')(hidden)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])
        self.model.compile(loss={
            'clustering': 'kld',
            decoder_layer: 'mse'
        },
                           loss_weights=[gamma, 1],
                           optimizer=optimizer)
        for layer in self.model.layers:
            print(layer, layer.trainable)
        self.ml_model = Model(
            inputs=self.autoencoder.input,
            outputs=[clustering_layer, self.autoencoder.output])
        self.ml_model.compile(loss={
            'clustering': ml_loss(),
            decoder_layer: 'mse'
        },
                              loss_weights=[ml_penalty, 1],
                              optimizer=cst_optimizer)
        self.cl_model = Model(inputs=self.autoencoder.input,
                              outputs=[clustering_layer])
        self.cl_model.compile(loss={'clustering': cl_loss()},
                              optimizer=cst_optimizer)
Esempio n. 8
0
    def __init__(self,
                 dims,
                 gamma=0.1,
                 n_clusters=10,
                 alpha=1.0,
                 init='glorot_uniform'):

        # super(IDEC,self).__init__(dims,
        #          n_clusters=10,
        #          alpha=1.0,
        #          init='glorot_uniform')
        self.dims = dims
        self.input_dim = dims[0]
        self.n_stacks = len(self.dims) - 1

        self.n_clusters = n_clusters
        self.alpha = alpha
        self.autoencoder, self.encoder = autoencoder(self.dims, init=init)

        # prepare DEC model
        clustering_layer = ClusteringLayer(self.n_clusters, name='clustering')(
            self.encoder.output)
        self.model = Model(inputs=self.autoencoder.input,
                           outputs=[clustering_layer, self.autoencoder.output])
Esempio n. 9
0
    def clustering(self,
                   x,
                   y=None,
                   train_dev_data=None,
                   validation_data=None,
                   tol=1e-3,
                   update_interval=140,
                   maxiter=2e4,
                   save_dir='./results/dec',
                   pretrained_weights=None,
                   alpha=K.variable(1.0),
                   beta=K.variable(0.0),
                   gamma=K.variable(0.0),
                   loss_weight_decay=True,
                   loss=None,
                   loss_weights=None):
        print('Update interval', update_interval)
        save_interval = x.shape[0] / self.batch_size * 5  # 5 epochs
        print('Save interval', save_interval)

        try:
            self.load_weights(pretrained_weights)
        except AttributeError:
            # initialize cluster centers using k-means
            print('Initializing cluster centers with k-means.')
            kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
            y_pred = kmeans.fit_predict(self.encoder.predict(x))
            y_pred_last = y_pred
            self.model.get_layer(name='clustering').set_weights(
                [kmeans.cluster_centers_])

        y_p = self.predict_clusters(x)

        cluster_to_label_mapping, n_assigned_list, majority_class_fractions = \
          get_cluster_to_label_mapping_safe(y[:,1], y_p, n_classes, n_clusters)

        print(
            np.argmax((1 - np.array(majority_class_fractions)) *
                      np.array(n_assigned_list)))
        cluster_to_label_mapping[np.argmax(
            (1 - np.array(majority_class_fractions)) *
            np.array(n_assigned_list))] = 1

        cluster_weights = self.model.get_layer(name='clustering').get_weights()
        #self.tmp_model = Model(inputs=self.model.input, outputs=self.model.layers[-2].output)
        a = Input(shape=(400, ))  # input layer
        #self.model.summary()
        #self.model.layers[1].trainable = False
        #self.model.layers[2].trainable = False
        #self.model.layers[3].trainable = False
        self.model.layers[1].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[2].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[3].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[4].kernel_regularizer = regularizers.l2(0.5)
        #self.model.summary()
        #self.autoencoder.summary()
        #self.encoder.summary()
        #exit()
        #q_out = self.model(b)
        hidden = self.encoder(a)
        q_out = ClusteringLayer(self.n_clusters, name='clustering')(hidden)
        #d = Dropout(0.2)(a)
        e_out = self.autoencoder(a)
        #pred = MappingLayer(cluster_to_label_mapping, output_dim=n_classes, \
        #  name='mapping', kernel_initializer=MapInitializer(cluster_to_label_mapping, n_classes))(q_out)
        #embed = self.encoder(a)
        #d_out = Dropout(0.4)(embed)
        #self.encoder.summary()
        #d_out = Dropout(0.7)(hidden)
        #pred = MappingLayer(cluster_to_label_mapping, output_dim=n_classes, \
        #  name='mapping', kernel_initializer=MapInitializer(cluster_to_label_mapping, n_classes))(d_out)
        #pred = Dense(2, activation='softmax')(hidden)
        pred = Dense(2, activation='softmax')(q_out)
        #pred = Dense(2, activation='softmax')(d_out)
        self.model = Model(inputs=a, outputs=[pred, q_out, e_out])
        #self.model = Model(inputs=a, outputs=[pred, q_out])
        self.model.get_layer(name='clustering').set_weights(cluster_weights)
        #optimizer = SGD(lr=1e-2)
        optimizer = 'adam'
        #self.model.compile(optimizer=optimizer, \
        #                   loss={'dense_1': 'categorical_crossentropy', 'clustering': 'kld'}, \
        #                   loss_weights={'dense_1': alpha, 'clustering': beta})
        if loss is None:
            self.model.compile(optimizer=optimizer, \
                               loss={'dense_1': 'categorical_crossentropy', 'clustering': 'kld', 'model_1': 'mse'},
                               loss_weights={'dense_1': alpha, 'clustering': beta, 'model_1': gamma})
        else:
            self.model.compile(optimizer=optimizer, \
                               loss=loss,
                               loss_weights=loss_weights)
        #self.model.compile(optimizer=optimizer, \
        #                   loss={'mapping': 'categorical_crossentropy', 'model_3': 'kld'}, \
        #                   loss_weights={'mapping': alpha, 'model_3': beta})
        import csv, os
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        #logfile = open(save_dir + '/dec_log.csv', 'w')
        #logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'acc', 'nmi', 'ari', 'L'])
        #logwriter.writeheader()
        #tmp = self.encoder.predict(x)
        loss = [0, 0, 0]
        index = 0
        q = self.model.predict(x, verbose=0)[1]
        y_pred_last = q.argmax(1)
        metrics_dict = {
            'iteration': [],
            'train_fom': [],
            'train_f1': [],
            'train_f1c': [],
            'train_h': [],
            'train_nmi': [],
            'valid_fom': [],
            'valid_f1': [],
            'valid_f1c': [],
            'valid_h': [],
            'valid_nmi': []
        }
        best_train_dev_loss = [np.inf, np.inf, np.inf]
        for ite in range(int(maxiter)):
            if ite % update_interval == 0:
                q = self.model.predict(x, verbose=0)[1]
                valid_p = self.target_distribution(
                    self.model.predict(validation_data[0], verbose=0)[1])
                p = self.target_distribution(
                    q)  # update the auxiliary target distribution p
                #print(p)
                #print(np.sum(self.encoder.predict(x) - tmp))
                #print(np.sum(self.encoder.predict(x) - self.tmp_model.predict(x)))

                # evaluate the clustering performance
                y_pred = q.argmax(1)
                delta_label = np.sum(y_pred != y_pred_last).astype(
                    np.float32) / y_pred.shape[0]
                y_pred_last = y_pred
                y_pred = self.model.predict(x)[0]
                if y is not None:
                    #acc = np.round(cluster_acc(y, y_pred), 5)
                    #ari = np.round(metrics.adjusted_rand_score(y, y_pred), 5)
                    loss = np.round(loss, 5)
                    #val_loss = np.round(self.model.test_on_batch(validation_data[0], [validation_data[1], valid_p]), 5)
                    c_map, _, _ = \
                      get_cluster_to_label_mapping_safe(y[:,1], q.argmax(1), n_classes, n_clusters, toprint=False)
                    f, _, _, _ = one_percent_fpr(y[:, 1], y_pred[:, 1], 0.01)
                    f = np.round(f, 5)
                    #print(y[:20,1], np.argmax(y_pred, axis=1)[:20])
                    train_cluster_pred = self.model.predict(
                        x, verbose=0)[1].argmax(1)
                    f1 = np.round(f1_score(y[:, 1], np.argmax(y_pred, axis=1)),
                                  5)
                    f1c = np.round(
                        calc_f1_score(y[:, 1], train_cluster_pred, c_map), 5)
                    h = np.round(
                        homogeneity_score(y[:, 1], train_cluster_pred), 5)
                    nmi = np.round(
                        metrics.normalized_mutual_info_score(
                            y[:, 1], train_cluster_pred), 5)
                    val_loss = np.round(
                        self.model.test_on_batch(
                            validation_data[0],
                            [validation_data[1], valid_p, validation_data[0]]),
                        5)
                    y_pred_valid = self.model.predict(validation_data[0])[0]
                    valid_cluster_pred = self.model.predict(
                        validation_data[0], verbose=0)[1].argmax(1)
                    f_valid, _, _, _ = one_percent_fpr(
                        validation_data[1][:, 1], y_pred_valid[:, 1], 0.01)
                    f_valid = np.round(f_valid, 5)
                    f1_valid = np.round(
                        f1_score(validation_data[1][:, 1],
                                 np.argmax(y_pred_valid, axis=1)), 5)
                    f1c_valid = np.round(
                        calc_f1_score(validation_data[1][:, 1],
                                      valid_cluster_pred, c_map), 5)
                    h_valid = np.round(
                        homogeneity_score(validation_data[1][:, 1],
                                          valid_cluster_pred), 5)
                    nmi_valid = np.round(
                        metrics.normalized_mutual_info_score(
                            validation_data[1][:, 1], valid_cluster_pred), 5)
                    #logdict = dict(iter=ite, acc=acc, nmi=nmi, ari=ari, L=loss)
                    #logwriter.writerow(logdict)
                    #print('Iter', ite, ': Acc', acc, ', nmi', nmi, ', ari', ari, '; loss=', loss)
                    #_, _, _ = \
                    #  get_cluster_to_label_mapping_safe(validation_data[1][:,1], self.model.predict(validation_data[0], verbose=0)[1].argmax(1), n_classes, n_clusters)
                    print('Iter', ite, ' :1% fpr', f, ', F1=', f1, ', F1c=',
                          f1c, 'h=', h, 'nmi=', nmi, '; loss=', loss,
                          ';\n v 1% fpr=,', f_valid, ', vF1=', f1_valid,
                          ', vF1c=', f1c_valid, 'vh=', h_valid, 'vnmi=',
                          nmi_valid, '; vloss=,', val_loss)
                    metrics_dict['iteration'].append(ite)
                    metrics_dict['train_fom'].append(f)
                    metrics_dict['train_f1'].append(f1)
                    metrics_dict['train_f1c'].append(f1c)
                    metrics_dict['train_h'].append(h)
                    metrics_dict['train_nmi'].append(nmi)
                    metrics_dict['valid_fom'].append(f_valid)
                    metrics_dict['valid_f1'].append(f1_valid)
                    metrics_dict['valid_f1c'].append(f1c_valid)
                    metrics_dict['valid_h'].append(h_valid)
                    metrics_dict['valid_nmi'].append(nmi_valid)

                    train_dev_p = self.target_distribution(
                        self.model.predict(train_dev_data[0], verbose=0)[1])
                    train_dev_loss = np.round(
                        self.model.test_on_batch(train_dev_data[0], [
                            train_dev_data[1], train_dev_p, train_dev_data[0]
                        ]), 5)
                    if train_dev_loss[1] < best_train_dev_loss[
                            1] and train_dev_loss[-1] < best_train_dev_loss[
                                -1]:  # only interested in classification improvements
                        print('saving model: ', best_train_dev_loss, ' -> ',
                              train_dev_loss)
                        self.model.save_weights('best_train_dev_loss.hf')
                        best_train_dev_loss = train_dev_loss
                        best_ite = ite

                # check stop criterion

                if ite > 0 and delta_label < tol:
                    print('delta_label ', delta_label, '< tol ', tol)
                    print('Reached tolerance threshold. Stopping training.')
                    logfile.close()
                    break

                # train on batch
                """
        if (index + 1) * self.batch_size > x.shape[0]:
          loss = self.model.train_on_batch(x=x[index * self.batch_size::],
                                           y=[y[index * self.batch_size::], \
                                              p[index * self.batch_size::]])
          index = 0
        else:
          loss = self.model.train_on_batch(x=x[index * self.batch_size:(index + 1) * self.batch_size],
                                           y=[y[index * self.batch_size:(index + 1) * self.batch_size], \
                                              p[index * self.batch_size:(index + 1) * self.batch_size]])
          index += 1
        """

            if loss_weight_decay:
                """
        if ite < 50:
          alpha = K.variable(1.0)
          beta  = K.variable(0.0)
          gamma = K.variable(1.0)
        elif ite >= 50:
          #alpha = K.variable(1.0)
          alpha = K.variable(0.0)
          #beta  = K.variable(0.0)
          beta  = K.variable(1.0)
          gamma  = K.variable(1.0)
          update_interval = 140
          self.model.optimizer = SGD(lr=0.01, momentum=0.9)
        """
                """
        elif ite >= 200 and ite < 300:
          #alpha = K.variable(1.0*(1 - ((ite - 200)/100.)))
          alpha = K.variable(1.0)
          beta  = K.variable(1.0)
          gamma = K.variable(1.0)
        print(K.eval(alpha), K.eval(beta))
        """
                #alpha = K.variable(1.0*(1 - ((ite - 200)/100.)))
                """
        if ite < 40:
          alpha = K.variable((1 - ite/maxiter))
          beta  = K.variable(1-alpha)
          gamma = K.variable(1.0)
        print(K.eval(alpha), K.eval(beta), K.eval(gamma))
        if ite == 40:
          print('Initializing cluster centers with k-means.')
          kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
          y_pred = kmeans.fit_predict(self.encoder.predict(x))
          self.model.get_layer(name='clustering').set_weights([kmeans.cluster_centers_])
        if ite >= 40:
          alpha = K.variable(0.0)
          beta  = K.variable(1.0)
          gamma = K.variable(1.0)
          update_interval=140
          self.model.optimizer = SGD(lr=0.01, momentum=0.9)
        """

                alpha = K.variable((1 - ite / maxiter))
                beta = K.variable(1 - alpha)
                gamma = K.variable(1.0)
                print(K.eval(alpha), K.eval(beta), K.eval(gamma))
                history = self.model.fit(x=x, y=[y,p,x], \
                          validation_data=(validation_data[0], [validation_data[1], valid_p, validation_data[0]]), \
                          callbacks=[MyLossWeightCallback(alpha, beta, gamma)], verbose=0)
            else:
                print(K.eval(alpha), K.eval(beta), K.eval(gamma))
                history = self.model.fit(x=x, y=[y,p,x], \
                          validation_data=(validation_data[0], [validation_data[1], valid_p, validation_data[0]]), \
                          verbose=0)
            #history = self.model.fit(x=x, y=[y,p], callbacks=[MyLossWeightCallback(alpha, beta)], verbose=0)
            #print(history.history)
            loss = [
                history.history[k][0] for k in history.history.keys()
                if 'val' not in k
            ]
            # save intermediate model
            if ite % save_interval == 0:
                # save IDEC model checkpoints
                print('saving model to:',
                      save_dir + '/DEC_model_' + str(ite) + '.h5')
                self.model.save_weights(save_dir + '/DEC_model_' + str(ite) +
                                        '.h5')

            ite += 1

        # save the trained model
        #logfile.close()
        print('saving model to:', save_dir + '/DEC_model_final.h5')
        self.model.save_weights(save_dir + '/DEC_model_final.h5')

        y_p = self.model.predict(x, verbose=0)[1].argmax(1)
        cluster_to_label_mapping, n_assigned_list, majority_class_fractions = \
          get_cluster_to_label_mapping_safe(y[:,1], y_p, n_classes, n_clusters)
        return y_pred, metrics_dict, best_ite
Esempio n. 10
0
    def clustering(self,
                   x,
                   y,
                   validation_data,
                   tol=1e-3,
                   update_interval=140,
                   maxiter=2e4,
                   save_dir='./results/dec',
                   pretrained_weights=None,
                   alpha=K.variable(0.9),
                   beta=K.variable(0.1)):

        print('Update interval', update_interval)
        save_interval = x.shape[0] / self.batch_size * 5  # 5 epochs
        print('Save interval', save_interval)

        try:
            self.load_weights(pretrained_weights)
        except AttributeError:
            # initialize cluster centers using k-means
            print('Initializing cluster centers with k-means.')
            kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
            y_pred = kmeans.fit_predict(self.encoder.predict(x))
            y_pred_last = y_pred
            self.model.get_layer(name='clustering').set_weights(
                [kmeans.cluster_centers_])

        # using only the labelled data set calculate the cluster label assignments
        y_pred = self.predict_clusters(x)
        self.n_classes = len(np.unique(y))
        cluster_to_label_mapping, n_assigned_list, majority_class_fractions = \
          get_cluster_to_label_mapping_safe(y[:,1], y_pred, self.n_classes, self.n_clusters)

        # ensure that the cluster with the most real detections is assigned the real class
        print(
            np.argmax((1 - np.array(majority_class_fractions)) *
                      np.array(n_assigned_list)))
        cluster_to_label_mapping[np.argmax(
            (1 - np.array(majority_class_fractions)) *
            np.array(n_assigned_list))] = 1
        cluster_centres = np.squeeze(
            np.array(self.model.get_layer(name='clustering').get_weights()))

        # build training set based on euclidean distances
        """
    x_encoded = self.encoder.predict(x_l)
    x_encoded_tiled = np.tile(x_encoded[:,:,np.newaxis], (1,1,self.n_clusters))
    cluster_centres_tiled = np.tile(cluster_centres[np.newaxis,:,:], (x_l.shape[0],1,1))
    euclidean_distances = np.squeeze(K.eval(euclidean_distance((x_encoded_tiled, cluster_centres_tiled))))
    cluster_preds = y_p
    y_c = []
    for i in range(x_l.shape[0]):
      l = np.argmax(y_l[i])
      c = cluster_preds[i]
      cl = cluster_to_label_mapping[c]
      if l == cl:
        y_c.append(c)
      else:
        ed = euclidean_distances[i][[np.where(cluster_to_label_mapping == l)]]
        ac = int(np.array(cluster_to_label_mapping)[np.where(cluster_to_label_mapping == l)][np.argmin(ed)])
        y_c.append(ac)
 
    # one hot encode these cluster assignements
    y_c = np_utils.to_categorical(y_c, self.n_clusters)
    """
        """
    # build the model
    a = Input(shape=(400,)) # input layer
    q_out = self.model(a)
    embed = self.encoder(a)
    pred = Dense(self.n_clusters, activation='softmax')(embed)
    self.model = Model(inputs=a, outputs=[q_out, pred])
    optimizer = SGD(lr=1e-1)
    #optimizer = 'adam'
    self.model.compile(optimizer=optimizer, \
                       loss={'dense_1': 'categorical_crossentropy', 'model_3': 'kld'}, \
                       loss_weights={'dense_1': alpha, 'model_3': beta})
    """
        a = Input(shape=(400, ))  # input layer
        self.model.layers[1].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[2].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[3].kernel_regularizer = regularizers.l2(0.5)
        self.model.layers[4].kernel_regularizer = regularizers.l2(0.5)
        hidden = self.encoder(a)
        q_out = ClusteringLayer(self.n_clusters, name='clustering')(hidden)
        e_out = self.autoencoder(a)
        pred = Dense(self.n_clusters, activation='softmax')(hidden)
        self.model = Model(inputs=a, outputs=[pred, q_out, e_out])
        self.model.get_layer(name='clustering').set_weights(cluster_weights)
        optimizer = SGD(lr=1e-1)
        self.model.compile(optimizer=optimizer, \
                           loss={'dense_1': 'categorical_crossentropy', 'clustering': 'kld', 'model_1': 'mse'}, \
                           loss_weights={'dense_1': alpha, 'clustering': beta, 'model_1': 1})

        loss = [0, 0, 0]
        index = 0
        q = self.model.predict(x, verbose=0)[1]
        y_pred_last = q.argmax(1)
        best_val_loss = [np.inf, np.inf, np.inf]
        for ite in range(int(maxiter)):
            if ite % update_interval == 0:
                q = self.model.predict(x, verbose=0)[1]
                p = self.target_distribution(
                    q)  # update the auxiliary target distribution p

                # evaluate the clustering performance
                y_pred = q.argmax(1)
                delta_label = np.sum(y_pred != y_pred_last).astype(
                    np.float32) / y_pred.shape[0]
                y_pred_last = y_pred
                y_pred = self.model.predict(x)[0]
                #print(self.model.get_layer(name='model_3').layers[-1].get_weights()[0])
                y_c = self.cluster_assignment(
                    x, y, p.argmax(1),
                    self.model.get_layer(
                        name='model_3').layers[-1].get_weights()[0],
                    np.array(cluster_to_label_mapping))
                if y is not None:
                    loss = np.round(loss, 5)
                    valid_p = self.target_distribution(
                        self.model.predict(validation_data[0], verbose=0)[1])
                    y_c_valid = self.cluster_assignment(
                        validation_data[0], validation_data[1],
                        valid_p.argmax(1),
                        self.model.get_layer(
                            name='model_3').layers[-1].get_weights()[0],
                        np.array(cluster_to_label_mapping))
                    val_loss = np.round(
                        self.model.test_on_batch(validation_data[0],
                                                 [y_c_valid, valid_p]), 5)
                    #val_loss = np.round(self.model.test_on_batch(validation_data[0], [validation_data[1], valid_p, validation_data[0]]), 5)
                    #f, _, _, _ = one_percent_fpr(y[:,1], y_pred[:,1], 0.01)
                    #f = np.round(f, 5)
                    #print(y[:20,1], np.argmax(y_pred, axis=1)[:20])
                    #f1 = np.round(f1_score(y[:,1], np.argmax(y_pred, axis=1)), 5)
                    #f1 = np.round(calc_f1_score(y, q.argmax(1), cluster_to_label_mapping), 5)
                    h = np.round(
                        homogeneity_score(
                            y[:, 1],
                            self.model.predict(x, verbose=0)[1].argmax(1)), 5)
                    #y_pred_valid = self.model.predict(validation_data[0])[0]
                    #f_valid, _, _, _ = one_percent_fpr(validation_data[1][:,1], y_pred_valid[:,1], 0.01)
                    #f_valid = np.round(f_valid, 5)
                    #f1_valid = np.round(f1_score(validation_data[1][:,1], np.argmax(y_pred_valid, axis=1)), 5)
                    #f1_valid = np.round(calc_f1_score(validation_data[1], self.model.predict(validation_data[0], verbose=0)[1], cluster_to_label_mapping), 5)
                    h_valid = np.round(
                        homogeneity_score(
                            validation_data[1][:, 1],
                            self.model.predict(validation_data[0],
                                               verbose=0)[1].argmax(1)), 5)
                    #logdict = dict(iter=ite, acc=acc, nmi=nmi, ari=ari, L=loss)
                    #logwriter.writerow(logdict)
                    #print('Iter', ite, ': Acc', acc, ', nmi', nmi, ', ari', ari, '; loss=', loss)
                    _, _, _ = \
                      get_cluster_to_label_mapping_safe(y[:,1], q.argmax(1), n_classes, n_clusters)
                    _, _, _ = \
                      get_cluster_to_label_mapping_safe(validation_data[1][:,1], self.model.predict(validation_data[0], verbose=0)[1].argmax(1), n_classes, n_clusters)
                    #print('Iter', ite, ' :1% fpr', f, ', F1=', f1, 'h=', h, '; loss=', loss, \
                    #      ';\n\t\t valid 1% fpr=,', f_valid, ', valid F1=', f1_valid, 'h_valid=', h_valid, '; valid_loss=,', val_loss, )
                    print('Iter', ite, 'h=', h, '; loss=', loss, 'h_valid=',
                          h_valid, '; valid_loss=,', val_loss)
                    if val_loss[1] < best_val_loss[
                            1]:  # only interested in classification improvements
                        print('saving model: ', best_val_loss, ' -> ',
                              val_loss)
                        self.model.save_weights('best_val_loss.hf')
                        best_val_loss = val_loss

                #alpha = K.variable(0.9*(1 - (ite/maxiter)))
                #beta  = K.variable(1 - alpha)
                print(K.eval(alpha), K.eval(beta))
                history = self.model.fit(
                    x=x,
                    y=[y_c, p],
                    callbacks=[MyLossWeightCallback(alpha, beta)],
                    verbose=0)
                #history = self.model.fit(x=x, y=[y,p,x], callbacks=[MyLossWeightCallback(alpha, beta)], verbose=0)
                print(history.history)
                loss = [history.history[k][0] for k in history.history.keys()]
                # save intermediate model
                if ite % save_interval == 0:
                    # save IDEC model checkpoints
                    print('saving model to:',
                          save_dir + '/DEC_model_' + str(ite) + '.h5')
                    self.model.save_weights(save_dir + '/DEC_model_' +
                                            str(ite) + '.h5')

                ite += 1

        # save the trained model
        #logfile.close()
        print('saving model to:', save_dir + '/DEC_model_final.h5')
        self.model.save_weights(save_dir + '/DEC_model_final.h5')

        return y_pred
Esempio n. 11
0
        if args.bn:
            h = Dense(dims[i + 1], name='encoder_%d' % i)(h)
            h = normalization.BatchNormalization()(h)
            h = Activation(activation='relu')(h)
        else:
            h = Dense(dims[i + 1], activation='relu', name='encoder_%d' % i)(h)

    # hidden layer
    z_mu = Dense(dims[-1], name='encoder_mu')(
        h)  # hidden layer, features are extracted from here
    z_log_var = Dense(dims[-1], activation='softplus',
                      name='encoder_logvar')(h)

    z = Lambda(sampling, output_shape=(dims[-1], ),
               name='z')([z_mu, z_log_var])
    clustering_layer = ClusteringLayer(n_clusters, name='clustering')(z_mu)
    # instantiate encoder model
    # latent_inputs = Input(shape=(dims[-1],), name='z_sampling')
    h = z

    # internal layers in decoder
    for i in range(n_stacks - 1, 0, -1):
        if args.bn:
            h = Dense(dims[i], name='decoder_%d' % i)(h)
            h = normalization.BatchNormalization()(h)
            h = Activation(activation='relu')(h)
        else:
            h = Dense(dims[i], activation='relu', name='decoder_%d' % i)(h)

    # output
    decoder_out = Dense(dims[0], activation='linear', name='decoder_out')(h)