Esempio n. 1
0
    def tree_node_selected(self, selected, un_selected):
        """
        树节点选中事件
        :param selected:
        :param un_selected:
        :return:
        """
        if selected.indexes() is None or len(selected.indexes()) == 0:
            return
        index = selected.indexes()[0]
        pk_field = index.data(Category.IDRole)

        # 查询一下是哪张表
        table_name = None
        pk_table_meta = None
        is_redis = False
        instance = DataCenter.get_instance()
        query_table_name = "select table_name, ana_category.pk_tablemeta, is_redis from ana_category join table_meta " \
                           "on ana_category.pk_tablemeta=table_meta.pk_tablemeta where pk_category='"
        query_table_name = query_table_name + str(pk_field) + "'"
        ret_val = instance.common_query(query_table_name)
        if len(ret_val) > 0:
            table_name = ret_val[0][0]
            pk_table_meta = ret_val[0][1]
            is_redis = ret_val[0][2] == 'Y'

        self.ana_result_type(table_name, pk_table_meta)
Esempio n. 2
0
    def calculate_period_win(self, period, calculate_data):
        period_field_map = {
            3: "three_day",
            7: 'seven_day',
            30: 'one_month',
            60: 'two_month'
        }
        if len(calculate_data) == 0:
            return
        for item in calculate_data:
            # 首先查询出最近历史的数据
            data_center = DataCenter.get_instance()
            query_sql = "select close from stock_base_info where ts_code='"
            query_sql = query_sql + item[0] + "' and trade_date > '"
            query_sql = query_sql + item[1].strftime("%Y%m%d") + "' order by trade_date limit 70"
            base_infos = data_center.common_query(query_sql)
            for single_period in period:
                if len(base_infos) >= single_period:
                    target_day_close = base_infos[single_period - 1][0]
                    in_price = item[2]
                    win_pct = (target_day_close - in_price) / target_day_close * 100
                    win_pct = win_pct

                    update_sql = "update " + self.table_name + " set "
                    update_sql = update_sql + period_field_map[single_period] + "='" + str(win_pct) + "'"
                    update_sql = update_sql + " where pk_period_verify='" + str(item[3]) + "'"
                    data_center.common_query(update_sql)

                    # FIXME -- 此处写死吧!!!!
                    if single_period == 60:
                        update_sql = "update " + self.table_name + " set finished=1 where pk_period_verify="
                        update_sql = update_sql + str(item[3]) + "'"
                        data_center.common_query(update_sql)
Esempio n. 3
0
    def __call__(self, *args, **kwargs):
        self.data_center = DataCenter()
        if len(self.ts_codes) == 0:
            return

        result = pandas.DataFrame(columns=('ts_code', 'in_price', 'in_date',
                                           'origin_from', 'in_reason',
                                           'finished', 'manual'))
        for ts_code in self.ts_codes:
            field_suffix = "_" + str(self.fast) + "_" + str(
                self.slow) + "_" + str(self.signal)
            macd_field_name = 'MACD' + field_suffix
            histogram_field_name = 'MACDh' + field_suffix
            signal_field_name = 'MACDs' + field_suffix
            base_infos = self.data_center.fetch_base_data(ts_code)
            if base_infos is None or len(base_infos) == 0:
                continue
            close = base_infos['close']
            macd_ret = ta.macd(close, self.fast, self.slow, signal=self.signal)
            if len(macd_ret) < 2:
                continue
            rst_length = len(macd_ret)
            start_index = min(rst_length, self.BUY_SIGNAL_PERIOD)
            start_index = rst_length - start_index
            low_flag = False
            for i in range(start_index, rst_length):
                if macd_ret.at[i, macd_field_name] is not None and macd_ret.at[i, signal_field_name] is not None and \
                        macd_ret.at[i, macd_field_name] < macd_ret.at[i, signal_field_name]:
                    low_flag = True
                else:
                    if low_flag:
                        now_time = datetime.datetime.now()
                        now_time_str = now_time.strftime('%Y%m%d')
                        temp_dict = {
                            'ts_code': ts_code,
                            'in_price': close[i],
                            'in_date': base_infos.at[start_index,
                                                     'trade_date'],
                            'origin_from': 'macd',
                            'in_reason': 'macd金叉',
                            'finished': 0,
                            'manual': 0
                        }
                        result = result.append(temp_dict, ignore_index=True)
        return result
Esempio n. 4
0
 def init_data_from_db(self):
     # 获取没有结束掉的股票
     query_sql = "select ts_code, in_date, in_price, pk_period_verify from period_verify where finished='0'"
     data_center = DataCenter.get_instance()
     ret_data = data_center.common_query(query_sql)
     # 首先计算一下各个阶段的收益
     period = [3, 7, 30, 60]
     self.calculate_period_win(period, ret_data)
     super().init_data_from_db()
Esempio n. 5
0
    def __init__(self):
        super().__init__()
        self.ui = Ui_MainWindow()
        self.ui.setupUi(self)
        # 树结构初始化

        # model = QFileSystemModel()
        # model.setRootPath(QDir.currentPath())
        #
        # tree = QTreeView(self)
        # tree.setFixedWidth(200)
        # tree.setFixedHeight(600)
        # tree.setModel(model)

        # 设置相关的监听事件
        self.tree_model = CategoryTreeModel()
        self.ui.treeView.setModel(self.tree_model)
        self.ui.treeView.selectionModel().selectionChanged.connect(
            self.tree_node_selected)
        self.ui.tableView.doubleClicked.connect(self.table_row_double_clicked)

        self.table_model = MainTableModel()
        self.ui.tableView.setModel(self.table_model)
        self.ui.tableView.setSortingEnabled(True)

        # 设置表格的邮件菜单
        self.ui.tableView.setContextMenuPolicy(
            PySide2.QtCore.Qt.ActionsContextMenu)

        # 具体菜单项
        manual_flag = QAction(self.ui.tableView)
        manual_flag.setText("标记为手动")
        manual_flag.triggered.connect(self.mark_manual)  # 点击菜单中的“发送控制代码”执行的函数

        # tableView 添加具体的右键菜单
        self.ui.tableView.addAction(manual_flag)

        # K线图组件初始化
        data_center = DataCenter()
        self.view_model = StockChartModel(data_center)
        self.ui.openGLWidget.set_model(self.view_model)

        # 创建一个弹出窗,然后显示单根K线的信息
        display = InfoDisplay(self)
        display.setModal(PySide2.QtCore.Qt.NonModal)
        display.show()
        self.ui.openGLWidget.mouse_on_changed.connect(
            display.stock_info_changed)

        # 相关按钮的初始化
        self.ui.actionrefresh.triggered.connect(self.refresh_stock_list)
        self.ui.actiondaily_info.triggered.connect(self.fetch_daily_info)
Esempio n. 6
0
 def fetch_daily_info():
     data_center = DataCenter.get_instance()
     last_record_day = data_center.common_query(
         "select trade_date from stock_base_info order by trade_date desc limit 1"
     )
     last_record_day = last_record_day[0][0]
     last_record_day = datetime.date(int(last_record_day[0:4]),
                                     int(last_record_day[4:6]),
                                     int(last_record_day[6:8]))
     last_record_day += datetime.timedelta(days=1)
     last_record_day = last_record_day.strftime("%Y%m%d")
     print("last record day is " + last_record_day)
     data_center.fetch_all_daily_info_until_now(trade_date=last_record_day)
Esempio n. 7
0
 def __call__(self, *args, **kwargs):
     self.data_center = DataCenter()
     if self.stock_codes is None or len(self.stock_codes) == 0:
         return
     # 统计所有的股票,在:param peirod期间之内的盈利情况
     sum_dict = {
         'win_pct_less_than_50': 0,
         'win_pct_bigger_than_50': 0,
         'win_pct_bigger_than_60': 0,
         'win_pct_bigger_than_70': 0,
     }
     for stock_code in self.stock_codes:
         base_infos = self.data_center.fetch_base_data(stock_code)
         shift_close = base_infos['close'].shift(self.period)
         win_pct = (shift_close - base_infos['close']) / base_infos['close']
         base_infos['win_pct'] = win_pct
         base_infos.drop(['vol', 'amount', 'pre_close', 'change'], axis=1, inplace=True)
         if not base_infos.empty:
             count_percent = len(base_infos[base_infos['win_pct'] > 0]) / len(base_infos)
             sum_dict['win_pct_less_than_50'] = sum_dict['win_pct_less_than_50'] + 1 if count_percent < 0.5 \
                 else sum_dict['win_pct_less_than_50']
             sum_dict['win_pct_bigger_than_50'] = sum_dict['win_pct_bigger_than_50'] + 1 if count_percent >= 0.5 \
                 else sum_dict['win_pct_bigger_than_50']
             sum_dict['win_pct_bigger_than_60'] = sum_dict['win_pct_bigger_than_60'] + 1 if count_percent >= 0.6 \
                 else sum_dict['win_pct_bigger_than_60']
             sum_dict['win_pct_bigger_than_70'] = sum_dict['win_pct_bigger_than_70'] + 1 if count_percent >= 0.7 \
                 else sum_dict['win_pct_bigger_than_70']
             sum_str = "win count percent is " + str(count_percent)
             file_name = "period_simulate_" + stock_code
             now_time = datetime.datetime.now()
             now_time_str = now_time.strftime('%Y%m%d')
             file_name += '_' + now_time_str
             file_name += '.csv'
             FileOutput.csv_output(None, base_infos, file_name, spe_dir_name=self.judge_out_name,
                                   extra_content=sum_str)
     return sum_dict
Esempio n. 8
0
 def __init__(self, parent=None):
     super().__init__(parent)
     self.root_item: TreeItem = TreeItem()
     # 做初始化逻辑
     data_center = DataCenter.get_instance()
     query_sql = "select * from ana_category"
     ret_val = data_center.common_query(query_sql)
     category_list = []
     for item in ret_val:
         temp_category = Category()
         temp_category.id = item[3]
         temp_category.parent_id = item[1]
         temp_category.category_name = item[2]
         category_list.append(temp_category)
     self.root_item.init_with_data(category_list)
Esempio n. 9
0
def merge_table_data(data_center: DataCenter, tables):
    """
    从多个表格里面查询出来股票编码,然后做个交集
    :param data_center:
    :param tables:
    :return:
    """
    if tables is None or len(tables) == 0:
        return pandas.Series()

    ret_series = pandas.Series()
    for item in tables:
        sql = "select ts_code from " + item
        temp_data = data_center.common_query_to_pandas(sql)
        temp_series = temp_data['ts_code']
        ret_series = ret_series.append(temp_series, ignore_index=True)
    return ret_series.unique()
Esempio n. 10
0
    def init_data_from_db(self):
        """
        通用的从数据库查询数据的结果处理类
        :return:
        """
        data_center = DataCenter.get_instance()
        query_sql = "select table_name, is_redis from table_meta where pk_tablemeta='"
        query_sql = query_sql + str(self.table_meta) + "'"
        table_meta = data_center.common_query(query_sql)
        if table_meta is None or len(table_meta) == 0:
            return

        self.db_table_name = table_meta[0][0]
        is_redis = table_meta[0][1] == 'Y'
        if is_redis:
            return

        query_sql = "select column_name, display_name, columntype from table_column where pk_tablemeta='"
        query_sql = query_sql + str(
            self.table_meta) + "' order by display_order"
        table_infos = data_center.common_query(query_sql)
        for item in table_infos:
            self.db_columns.append(item[0])
            self.display_head.append(item[1])
            self.column_type.append(item[2])
        if len(self.db_columns) == 0:
            return

        # 此处特殊处理一下ts_name字段
        query_sql = "select stock_list.name as ts_name, "
        for item in self.db_columns:
            if item == 'ts_name':
                continue
            real_item = self.db_table_name + ".ts_code " if item == 'ts_code' else item
            query_sql = query_sql + real_item + ","
        query_sql = query_sql[:-1]
        query_sql = query_sql + " from " + self.db_table_name
        query_sql = query_sql + " left join stock_list on stock_list.ts_code=" + self.db_table_name + ".ts_code "
        if self.filter is not None:
            query_sql = query_sql + " " + self.filter
        data = data_center.common_query(query_sql)
        for item in data:
            self.data.append(list(item))
        # 处理一下数据类型问题
        self.process_data_type()
Esempio n. 11
0
    def select_data(self):
        """
        查询数据,更新表格
        :return:
        """
        query_sql = ""
        for i in range(len(self.select_columns)):
            query_sql = query_sql + self.select_columns[i] + ","

        query_sql = query_sql + self.select_columns[len(self.select_columns) - 1]
        query_sql = query_sql + " from " + self.table_name + " "
        query_sql = query_sql + self.filter

        data_center = DataCenter.get_instance()
        query_rst = data_center.common_query(query_sql)
        for item in query_rst:
            self.table_data.append(item)
        super().endResetModel()
Esempio n. 12
0
class Simulate:
    BUY_FLAG = 1
    SOLD_FLAG = -1
    DO_NOTHING = 0
    MULTI_INDI_BETWEEN = 5 # 如果有多种指标,多少天之内均发出买入信号就决定买入

    def __init__(self, stock_codes, judge_out_name, judge_time=None):
        self.initial_mny = None
        self.stock_codes = stock_codes
        self.judge_time = judge_time
        self.hold_num = 0  # 持仓手数
        self.left_mny = 0  # 剩余金额
        self.judge_out_name = judge_out_name  # 判定输出目录名称

    def set_registry(self, judge_time):
        self.judge_time = judge_time

    def set_judge_name(self, judge_name):
        self.judge_out_name = judge_name

    def set_init_mny(self, init_mny):
        """
        设置初始金额,金额为RMB
        :param init_mny:
        :return:
        """
        self.initial_mny = init_mny
        self.left_mny = init_mny

    def reset(self):
        self.left_mny = self.initial_mny
        self.hold_num = 0

    def __call__(self, *args, **kwargs):
        # TODO -- 看一下Python的数值计算方式,是否有小数???
        self.data_center = DataCenter()
        final_sum_dict = {
            'win_num': 0,
            'lose_num': 0,
            'max_win_pct': 0,
            'max_lost_pct': 0,
            'ave_win_mny': 0
        }
        trade_rst = pandas.DataFrame(columns=('ts_code', 'trade_times', 'final_win', 'win_pct'))
        for stock_code in self.stock_codes:
            trade_rst_dict = {
                'ts_code': stock_code,
                'trade_times': 0,
                'final_win': 0,
                'win_pct': 0
            }
            base_infos = self.data_center.fetch_base_data(stock_code)

            if base_infos is None or len(base_infos) == 0:
                continue

            ret_time = []
            for item in self.judge_time:
                ret_time.append(item(base_infos))
            if ret_time is None or len(ret_time) == 0:
                continue
            detail_trade_info = pandas.DataFrame(
                columns=('ts_code', 'curr_close', 'trade_date', 'trade_num', 'hold_num', 'hold_mny',
                         'total_mny'))
            if len(ret_time[0]) != len(base_infos):
                print("Not equals!!!")
            for i in range(len(ret_time[0])):
                # 判定是否是买入时机
                operate_flag = self.DO_NOTHING
                temp_buy_pct = 0.1
                for item in ret_time:
                    # 从当前往前5天之内是否有发出过买入信号,如果有,就算有
                    start_index = i - self.MULTI_INDI_BETWEEN
                    start_index = 0 if start_index < 0 else start_index
                    temp_val = self.DO_NOTHING
                    for j in range(start_index, i + 1):
                        if item.at[j, 'flag'] == self.BUY_FLAG:
                            temp_val = self.BUY_FLAG
                            temp_buy_pct = item.at[j, 'percent'] if 0 < item.at[j, 'percent'] < temp_buy_pct \
                                else temp_buy_pct
                            break
                        elif item.at[j, 'flag'] == self.SOLD_FLAG:
                            temp_val = self.SOLD_FLAG
                            temp_buy_pct = item.at[j, 'percent'] if 0 < item.at[j, 'percent'] < temp_buy_pct \
                                else temp_buy_pct
                            break
                    if operate_flag == self.DO_NOTHING or operate_flag == temp_val:
                        operate_flag = temp_val
                        continue
                    else:
                        operate_flag = self.DO_NOTHING
                        break

                if operate_flag == self.BUY_FLAG:
                    # 默认买入10%
                    buy_pct = temp_buy_pct
                    buy_mny = self.initial_mny * buy_pct
                    buy_mny = self.left_mny if self.left_mny < buy_mny else buy_mny
                    buy_num = buy_mny / base_infos.at[i, 'close']
                    self.hold_num = self.hold_num + buy_num
                    self.left_mny = self.left_mny - buy_mny
                    hold_mny = self.hold_num * base_infos.at[i, 'close']
                    # 记录买入信息
                    temp_dict = {
                        'ts_code': stock_code,
                        'trade_date': base_infos.at[i, 'trade_date'],
                        'trade_num': buy_num,
                        'hold_num': self.hold_num,
                        'hold_mny': hold_mny,
                        'total_mny': self.left_mny + hold_mny,
                        'curr_close': base_infos.at[i, 'close']
                    }
                    detail_trade_info = detail_trade_info.append(temp_dict, ignore_index=True)
                    trade_rst_dict['trade_times'] = trade_rst_dict['trade_times'] + 1
                elif operate_flag == self.SOLD_FLAG:
                    # 默认卖出持仓数量的10%
                    sold_pct = temp_buy_pct
                    sold_num = self.hold_num * sold_pct
                    sold_num = sold_num / 100 * 100
                    self.hold_num = self.hold_num - sold_num
                    sold_mny = sold_num * base_infos.at[i, 'close']
                    self.left_mny = self.left_mny + sold_mny
                    hold_mny = self.hold_num * base_infos.at[i, 'close']
                    # 记录卖出信息
                    temp_dict = {
                        'ts_code': stock_code,
                        'trade_date': base_infos.at[i, 'trade_date'],
                        'trade_num': sold_num,
                        'hold_num': self.hold_num,
                        'hold_mny': hold_mny,
                        'total_mny': self.left_mny + hold_mny,
                        'curr_close': base_infos.at[i, 'close']
                    }
                    detail_trade_info = detail_trade_info.append(temp_dict, ignore_index=True)
                    trade_rst_dict['trade_times'] = trade_rst_dict['trade_times'] + 1
            if not detail_trade_info.empty:
                file_name = "simulate_" + str(stock_code)
                now_time = datetime.datetime.now()
                now_time_str = now_time.strftime('%Y%m%d')
                file_name += '_' + now_time_str
                file_name += '.csv'
                FileOutput.csv_output(None, detail_trade_info, file_name, spe_dir_name=self.judge_out_name)
            else:
                print("no such stock!")
            self.reset()
            if detail_trade_info.empty:
                continue
            # 统计该只股票的最终盈利
            last_win = detail_trade_info.at[(len(detail_trade_info) - 1), 'total_mny'] - self.initial_mny
            last_win_pct = last_win / self.initial_mny
            trade_rst_dict['final_win'] = last_win
            trade_rst_dict['win_pct'] = last_win_pct
            trade_rst = trade_rst.append(trade_rst_dict, ignore_index=True)

            # 统计多只股票的汇总
            final_sum_dict['win_num'] = final_sum_dict['win_num'] + 1 if last_win > 0 else final_sum_dict['win_num']
            final_sum_dict['lose_num'] = final_sum_dict['lose_num'] + 1 if last_win <= 0 else final_sum_dict['lose_num']
            final_sum_dict['max_win_pct'] = last_win_pct if last_win_pct > final_sum_dict['max_win_pct'] else \
                final_sum_dict['max_win_pct']
            final_sum_dict['max_lost_pct'] = last_win_pct if last_win_pct <= final_sum_dict['max_lost_pct'] else \
                final_sum_dict['max_lost_pct']

        sum_str = "获利数量:" + str(final_sum_dict['win_num']) + " 损失数量:" + str(final_sum_dict['lose_num']) \
                  + " 最大获利百分比:" + str(final_sum_dict['max_win_pct']) + " 最大损失百分比:" + \
                  str(final_sum_dict['max_lost_pct'])
        if not trade_rst.empty:
            file_name = "trade_group_" + self.stock_codes[0]
            now_time = datetime.datetime.now()
            now_time_str = now_time.strftime('%Y%m%d')
            file_name += '_' + now_time_str
            file_name += '.csv'
            FileOutput.csv_output(None, trade_rst, file_name, spe_dir_name=self.judge_out_name, extra_content=sum_str)
        return final_sum_dict
Esempio n. 13
0
 def refresh_stock_list():
     data_center = DataCenter.get_instance()
     data_center.refresh_stock_list()