def getDensityPlot(): X = validate.getdatafile() X.astype('float32') pyplot.figure(1) pyplot.subplot(211) X.hist() pyplot.subplot(212) X.plot(kind='kde') pyplot.show()
def getBoxWhiskerPlot(): X = validate.getdatafile() X.astype('float32') groepen = X['1964':'1970'].groupby(TimeGrouper('A')) jaren = DataFrame() for name, groep in groepen: jaren[name.year] = groep.values jaren.boxplot() pyplot.show()
def predictFuture(): series = validate.getdatafile() months_in_year = 12 model_fit = ARIMAResults.load(variables.model) bias = numpy.load(variables.bias) yhat = float(model_fit.forecast()[0]) yhat = bias + inverse_difference(series.values, yhat, months_in_year) print('Predicted: %.3f' % yhat) pyplot.plot(series) pyplot.title('Lijn diagram tot aan voorspelling') pyplot.show() prediction = pd.DataFrame(yhat) prediction.to_csv(variables.predictionSave, mode='a', sep=',', header=False) prediction.to_csv(variables.datafileloc, mode='a', header=False)
def getSummary(): from Data import validate file = validate.getdatafile() summary = file.describe() print(summary)
def getLineplot(): X = validate.getdatafile() X.plot() pyplot.title('Lijn diagram') pyplot.show()