#tb_profile = tf.keras.callbacks.TensorBoard(log_dir = "E:\workspace_ms_zhiyuan\\tensorboard_log\\",histogram_freq = 1, profile_batch = '500,520') #tf.keras.backend.floatx() #os.environ['AUTOGRAPH_VERBOSITY'] = 5 model = SVBRDF_debugged(9) #model = svbrdf_branched() learning_rate = 0.00002 #model = UNET(9) #model.summary() sample = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\Train_smaller' train_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\trainBlended' test_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\testBlended' #test_path = 'D:\Y4\DNNreimplement\Deschaintre\Dataset\Train' print('load_data') ds = svbrdf_gen(train_path, 8) sample_ds = svbrdf_gen(sample, 8) test_ds = svbrdf_gen(test_path, 8) print(ds.element_spec) print('finish_loading') opt = Adam(lr=learning_rate) model.compile(optimizer=opt, loss=rendering_loss, metrics=['accuracy']) hitory = model.fit( ds, verbose=1, steps_per_epoch=20, epochs=8, callbacks=[ tensorboard_callback ]) #24884 DisplayCallback(),tensorboard_callback,DisplayCallback(),
import tensorflow as tf from svbrdf import SVBRDF from DataGen import svbrdf_gen from GGXrenderer import rendering_loss,l1_loss from tensorflow.keras.optimizers import Adam print(tf.__version__) test_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\testBlended' print('load_data') ds = svbrdf_gen(test_path,8) print(ds.element_spec) print('finish_loading') opt = Adam(lr=0.00002) new_model = tf.keras.models.load_model('E:\workspace_ms_zhiyuan\DNNreimplement\Model_trained\Model_trained\Model_fully_functional', custom_objects = {'rendering_loss' : rendering_loss},compile=False ) #new_model.summary() new_model.compile(optimizer = opt, loss = rendering_loss, metrics = ['accuracy']) loss, acc = new_model.evaluate(ds, verbose=2,steps=10) print('Restored model, accuracy: {:5.2f}%'.format(100 * acc))
display(photo[0],pred_svbrdf[0]) #tf.keras.backend.floatx() #os.environ['AUTOGRAPH_VERBOSITY'] = 5 model = SVBRDF(9) #model = UNET(9) #model.summary() sample = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\Train_smaller' train_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\trainBlended' #test_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\testBlended' #test_path = 'D:\Y4\DNNreimplement\Deschaintre\Dataset\Train' print('load_data') ds = svbrdf_gen(sample,8) sample_ds = svbrdf_gen(sample,8) print(ds.element_spec) print('finish_loading') opt = Adam(lr=0.00002) model.compile(optimizer = opt, loss = rendering_loss, metrics = ['mse']) hitory = model.fit( ds,verbose =1 , steps_per_epoch = 20, epochs=20)#,callbacks=[DisplayCallback()]) #24884 plt.plot(list(range(0, num_epochs)), hitory.history['loss'], label=' Loss',c='r',alpha=0.6) plt.plot(list(range(0, num_epochs)), hitory.history['mse'], label=' mse',c='b',alpha=0.6) model.save('E:\workspace_ms_zhiyuan\DNNreimplement\Model_saved_1') plt.show()
import tensorflow as tf from svbrdf import SVBRDF, rendering_loss from DataGen import svbrdf_gen #from ds_test.ds_test import DsTest tf.keras.backend.floatx() model = SVBRDF(9) #model.summary() #train_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\trainBlended' #test_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\testBlended' #(trainx, trainy),(testx,testy) = DsTest.load() train_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\trainBlended' test_path = 'E:\workspace_ms_zhiyuan\Data_Deschaintre18\\testBlended' print('load_data') ds = svbrdf_gen(train_path,8) print(ds.element_spec) print('finish_loading') model.compile(optimizer = 'Adam', loss = rendering_loss, metrics = ['mse']) model.fit( ds,verbose =2 , epochs=20) model.save('E:\workspace_ms_zhiyuan\DNNreimplement\Deschaintre\Model_saved')