Esempio n. 1
0
    def test_slice(self):
        print('TestTrainData: skim')
        a = self.createSimpleArray('int32', 600)
        b = self.createSimpleArray('float32', 600)
        d = self.createSimpleArray('float32', 600)

        a_slice = a.getSlice(2, 3)
        b_slice = b.getSlice(2, 3)
        d_slice = d.getSlice(2, 3)

        td = TrainData()
        td._store([a, b], [d], [])
        td_slice = td.getSlice(2, 3)

        fl = td_slice.transferFeatureListToNumpy(False)
        tl = td_slice.transferTruthListToNumpy(False)
        a_tdslice = SimpleArray(fl[0], fl[1])
        b_tdslice = SimpleArray(fl[2], fl[3])
        d_tdslice = SimpleArray(tl[0], tl[1])

        self.assertEqual(a_slice, a_tdslice)
        self.assertEqual(b_slice, b_tdslice)
        self.assertEqual(d_slice, d_tdslice)

        #test skim
        td.skim(2)
        fl = td.transferFeatureListToNumpy(False)
        tl = td.transferTruthListToNumpy(False)
        a_tdslice = SimpleArray(fl[0], fl[1])
        b_tdslice = SimpleArray(fl[2], fl[3])
        d_tdslice = SimpleArray(tl[0], tl[1])

        self.assertEqual(a_slice, a_tdslice)
        self.assertEqual(b_slice, b_tdslice)
        self.assertEqual(d_slice, d_tdslice)
Esempio n. 2
0
 def sub_test_store(self, readWrite):
     td = TrainData()
     x,y,w = self.createSimpleArray('int32'), self.createSimpleArray('float32'), self.createSimpleArray('int32')
     x_orig=x.copy()
     x2,y2,_ = self.createSimpleArray('float32'), self.createSimpleArray('float32'), self.createSimpleArray('int32')
     x2_orig=x2.copy()
     y_orig=y.copy()
     
     td._store([x,x2], [y,y2], [w])
     
     if readWrite:
         td.writeToFile("testfile.tdjctd")
         td = TrainData()
         td.readFromFile("testfile.tdjctd")
         os.system('rm -f testfile.tdjctd')
     
     shapes = td.getNumpyFeatureShapes()
     self.assertEqual([[3, 5, 6], [1], [3, 5, 6], [1]], shapes,"shapes")
     
     self.assertEqual(2, td.nFeatureArrays())
     self.assertEqual(2, td.nTruthArrays())
     self.assertEqual(1, td.nWeightArrays())
     
     f = td.transferFeatureListToNumpy(False)
     t = td.transferTruthListToNumpy(False)
     w = td.transferWeightListToNumpy(False)
     
     xnew = SimpleArray(f[0],np.array(f[1],dtype='int64'))
     self.assertEqual(x_orig, xnew)
     
     xnew = SimpleArray(f[2],np.array(f[3],dtype='int64'))
     self.assertEqual(x2_orig, xnew)
     
     ynew = SimpleArray(t[0],np.array(t[1],dtype='int64'))
     self.assertEqual(y_orig, ynew)
Esempio n. 3
0
    def test_TrainDataRead(self):
        print('TestCompatibility TrainData')
        td = TrainData()
        td.readFromFile('trainData_previous.djctd')

        self.assertEqual(td.nFeatureArrays(), 1)

        arr = np.load("np_arr.npy")
        rs = np.load("np_rs.npy")

        b = SimpleArray(arr, rs)

        a = td.transferFeatureListToNumpy(False)
        a, rs = a[0], a[1]

        a = SimpleArray(a, np.array(rs, dtype='int64'))

        self.assertEqual(a, b)
Esempio n. 4
0
import matplotlib.patches as patches
import math
from numba import jit

from inference import collect_condensates, make_inference_dict

parser = ArgumentParser('make plots')
parser.add_argument('inputFile')

args = parser.parse_args()

#use traindata as data storage
td = TrainData()
td.readFromFile(args.inputFile)

td.x = td.transferFeatureListToNumpy()

data = make_inference_dict(td.x[0], td.x[1], td.x[2])

betaselection = collect_condensates(data, 0.1, 0.8)  #0.2/2.0

print('betaselection', betaselection.shape)


def makeRectangle(size, pos, edgecolor='y'):
    return patches.Rectangle([pos[0] - size[0] / 2., pos[1] - size[1] / 2.],
                             size[0],
                             size[1],
                             linewidth=1,
                             edgecolor=edgecolor,
                             facecolor='none')
Esempio n. 5
0
#!/usr/bin/env python

import numpy as np
from argparse import ArgumentParser
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

parser = ArgumentParser('make plots')
parser.add_argument('inputFile')

args = parser.parse_args()

from DeepJetCore.TrainData import TrainData
from tools import make_particle_resolution_plots

#just read the stored data
td = TrainData()
td.readFromFile(args.inputFile)
indata = td.transferFeatureListToNumpy()
pred, feat, truth = indata[0], indata[1], indata[2]
del td

print('pred', pred.shape)
print('feat', feat.shape)
print('truth', truth.shape)

make_particle_resolution_plots(feat, pred, truth, outfile="reso.pdf")
Esempio n. 6
0
from plotting_tools import plotevent
import numpy as np

parser = ArgumentParser('Make some plots')
parser.add_argument('inputFile')
args = parser.parse_args()

infile = str(args.inputFile)

from DeepJetCore.TrainData import TrainData
import matplotlib.pyplot as plt

td=TrainData()
td.readFromFile(infile)

feat = td.transferFeatureListToNumpy()[0]
truth = td.transferTruthListToNumpy()[0]
nevents = min(len(feat),10)


for e in range(nevents):
    
    print('true energy', truth[e])
    print('reco sum   ', np.sum(feat[e,:,:,:,0]))
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_xlabel("x [idx]")
    ax.set_zlabel("y [idx]")
    ax.set_ylabel("z [idx]")
    ax.grid(False)