code_ndim=2, # hparam trainable_gen=['generator'], D_lr=1e-3, G_lr=5e-4, # change to 1e-4 when finetuning G_k=5, D_boost=0, G_clipnorm=None, # 1.0, # traini batch_size=32, continued=False, overwrite_workdir=True, iterations=20000, workdir='./temp/DCRNN_RhythmGAN/' ) model = DCRNN(hparam) model.build() # coder = NoteDurationCoder(normalize_key='C5', first_voice=False) coder = MultiHotCoder(normalize_key='C5', only_major=True) if hparam.code_dim == 3: def sample(batch_size): code_s = np.random.uniform(-1., +1., size=(batch_size, hparam.code_dim)) code_e = np.random.uniform(-1., +1., size=(batch_size, hparam.code_dim)) res = np.zeros((batch_size, hparam.timesteps, hparam.code_dim))
show_grad=False, show_input=True, # hparam trainable_gen=['generator'], D_lr=1e-3, G_lr=5e-4, # change to 1e-4 when finetuning G_k=5, D_boost=0, G_clipnorm=None, # 1.0, # traini batch_size=32, continued=False, overwrite_workdir=True, iterations=10000, workdir='./temp/Fillblank/') model = DCRNN(hparam) model.build() # coder = NoteDurationCoder(normalize_key='C5', first_voice=False) coder = MultiHotCoder(normalize_key='C5', with_velocity=True) try: data = np.load('temp/easy.npz')['data'] except: data = np.array( map_dir(lambda fn: coder.encode(ms.converter.parse(fn)), './datasets/easymusicnotes/')) np.savez('temp/easy.npz', data=data) print(len(data), map(lambda x: len(x), data)) data = filter(lambda x: len(x) > 0 and x.shape[1] > hparam.timesteps, data) # import matplotlib.pyplot as plt
cond_dim=12, # hparam trainable_gen=['generator'], D_lr=1e-3, G_lr=8e-4, # change to 1e-4 when finetuning G_k=2, D_boost=0, G_clipnorm=None, # 1.0, # traini batch_size=32, continued=False, overwrite_workdir=True, iterations=40000, workdir='./temp/DCRNN_cond/' ) model = DCRNN(hparam) model.build() # coder = NoteDurationCoder(normalize_key='C5', first_voice=False) # coder = MultiHotCoder(normalize_key='C5', only_major=True) coder = MultiHotCoder(# normalize_key='C5', with_velocity=True, # only_major=True, length_limit=np.inf) try: # data = np.load('temp/easy.npz') # raise Exception data = np.load('temp/piano-midi.npz') voi, vel = data['voice'], data['velocity'] # data = (voi*vel)/127. data = voi