Esempio n. 1
0
def patch_denoising(dataset, config, net):

    # reproducibility
    torch.manual_seed(1)
    np.random.seed(1)

    #Device for computation (CPU or GPU)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    #mat_eng = matlab.engine.start_matlab()
    #mat_eng.cd(r'C:\Users\garwi\Desktop\Uni\Master\3_Semester\Masterthesis\Implementation\DnCNN\DnCNN\utilities')

    # Load datasetloader
    #test_loader = get_loader_cifar('../../../datasets/CIFAR10', 1, train=False, num_workers=0);
    #test_loader = get_loader_bsds('../../../datasets/BSDS/pixelcnn_data/train', 1, train=False, crop_size=[32,32]);
    test_loader = get_loader_denoising(
        '../../../datasets/' + dataset,
        1,
        train=False,
        gray_scale=True,
        crop_size=None
    )  #[140,140])#[config.crop_size, config.crop_size])  #256

    psnr_sum = 0
    ssim_sum = 0
    cnt = 0
    step = 0

    description = 'Denoising_dataset_' + dataset

    logfile = open(config.directory.joinpath(description + '.txt'), 'w+')

    #writer_tensorboard =  SummaryWriter(comment=description)
    writer_tensorboard = SummaryWriter(config.directory.joinpath(description))
    writer_tensorboard.add_text('Config parameters', config.config_string)

    # Iterate through dataset
    for image, label in test_loader:
        cnt += 1

        image = torch.tensor(image, dtype=torch.float32)

        img_size = image.size()

        #Add noise to image
        sigma = torch.tensor(config.sigma)
        mean = torch.tensor(0.)
        noisy_img = add_noise(image, sigma, mean)

        # Size of patches
        patch_size = [256, 256]

        # Cop and create array of patches
        noisy_patches, upper_borders, left_borders = patchify(
            noisy_img, patch_size)
        image_patches, _, _ = patchify(image, patch_size)

        print(image_patches.size())

        # Optimizing parameters
        sigma = torch.tensor(sigma * 2 / 255, dtype=torch.float32).to(device)
        alpha = torch.tensor(config.alpha, dtype=torch.float32).to(device)

        denoised_patches = torch.zeros(noisy_patches.size())

        for i in range(noisy_patches.size(0)):
            # Initialization of parameter to optimize
            x = torch.tensor(noisy_patches[i].to(device), requires_grad=True)

            img = image_patches[i]

            y = noisy_patches[i].to(device)

            params = [x]

            if config.linesearch:
                optimizer = config.optimizer(params,
                                             lr=config.lr,
                                             history_size=10,
                                             line_search='Wolfe',
                                             debug=True)
            else:
                optimizer = config.optimizer(params,
                                             lr=config.lr,
                                             betas=[0.9, 0.8])

            scheduler = optim.lr_scheduler.StepLR(optimizer,
                                                  step_size=1,
                                                  gamma=config.lr_decay)
            denoise = Denoising(optimizer,
                                config.linesearch,
                                scheduler,
                                config.continuous_logistic,
                                image,
                                y,
                                net,
                                sigma,
                                alpha,
                                net_interval=1,
                                writer_tensorboard=None)

            conv_cnt = 0.
            best_psnr = 0.
            best_ssim = 0.
            psnr_ssim = 0.

            for j in range(2):  #config.n_epochs):

                x, gradient, loss = denoise(x, y, img, j)

                psnr = PSNR(x[0, :, :, :].cpu(), img[0, :, :, :].cpu())
                ssim = c_ssim(((x.data[0, 0, :, :] + 1) /
                               2).cpu().detach().clamp(min=-1, max=1).numpy(),
                              ((img.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
                              data_range=1,
                              gaussian_weights=True)
                print('SSIM: ', ssim)

                # Save best SSIM and PSNR
                if ssim >= best_ssim:
                    best_ssim = ssim

                if psnr >= best_psnr:
                    best_psnr = psnr
                    step = j + 1
                    psnr_ssim = ssim
                    conv_cnt = 0
                else:
                    conv_cnt += 1

                if keyboard.is_pressed('*'): break

            #x_plt = (x+1)/2
            denoised_patches[i] = x.detach().cpu()

        img_denoised = aggregate(denoised_patches, upper_borders, left_borders,
                                 img_size)
        psnr = PSNR(img_denoised[0, :, :, :].cpu().clamp(min=-1, max=1),
                    image[0, :, :, :].cpu())
        ssim = c_ssim(((img_denoised.data[0, 0, :, :] + 1) /
                       2).cpu().detach().clamp(min=-1, max=1).numpy(),
                      ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
                      data_range=1,
                      gaussian_weights=True)

        # tensorboard
        img_denoised_plt = (img_denoised + 1) / 2
        writer_tensorboard.add_scalar('Optimize/Best_PSNR', psnr, cnt)
        writer_tensorboard.add_scalar('Optimize/Best_SSIM', ssim, cnt)
        image_grid = make_grid(img_denoised_plt,
                               normalize=True,
                               scale_each=True)
        writer_tensorboard.add_image('Image', image_grid, cnt)

        print('Image ', cnt, ': ', psnr, '-', ssim)
        logfile.write('PSNR_each:  %f - step %f\r\n' % (psnr, step))
        logfile.write('SSIM_each:  %f\r\n' % ssim)
        psnr_sum += psnr
        ssim_sum += ssim

        #        test1 = img[0,0].numpy()
        #
        #        test2 = ((denoised_patches[0][0,0]+1)/2).numpy()
        #        test3 = ((denoised_patches[1][0,0]+1)/2).numpy()
        #        test4 = ((denoised_patches[2][0,0]+1)/2).numpy()
        #        test5 = ((denoised_patches[3][0,0]+1)/2).numpy()

        #Plotting
        fig, axs = plt.subplots(2, 1, figsize=(8, 8))
        count = 0
        for i in range(0, 1):
            axs[count].imshow(
                ((denoised_patches[i][0, 0] + 1) / 2).cpu().detach().numpy(),
                cmap='gray')
            count += 1
            #fig.colorbar(im, ax=axs[i])

        if cnt > 7: break

    psnr_avg = psnr_sum / cnt
    ssim_avg = ssim_sum / cnt
    print('PSNR_Avg: ', psnr_avg)
    print('SSIM_Avg: ', ssim_avg)
    logfile.write('PSNR_avg:  %f\r\n' % psnr_avg)
    logfile.write('SSIM_avg: %f\r\n' % ssim_avg)

    logfile.close()
    writer_tensorboard.close()

    #print(patches.size())
    print(img.size())
    axs[1].imshow(((img_denoised[0, 0, :, :] + 1) / 2).cpu().detach().numpy(),
                  cmap='gray')

    print(PSNR(img_denoised[0, :, :, :].cpu(), image[0, :, :, :].cpu()))

    return psnr_avg, ssim_avg
Esempio n. 2
0
def optimizeMAP(data_list, scale, lr, net, config):

    # reproducibility
    torch.manual_seed(1)
    np.random.seed(1)
    torch.backends.cudnn.deterministic = True

    #Device for computation (CPU or GPU)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    best_psnr_sum = 0
    best_ssim_sum = 0
    cnt = 0
    step = 0

    description = 'Evaluation_parameter_scale=' + str(scale) + '_lr' + str(lr)

    logfile = open(config.directory.joinpath(description + '.txt'), 'w+')

    #writer_tensorboard =  SummaryWriter(comment=description)
    writer_tensorboard = SummaryWriter(config.directory.joinpath(description))
    writer_tensorboard.add_text('Config parameters', config.config_string)

    #PSNR, SSIM - step size Matrix
    psnr_per_step = np.zeros((len(data_list), config.n_epochs))
    ssim_per_step = np.zeros((len(data_list), config.n_epochs))
    image_list = torch.zeros((len(data_list), config.n_epochs, 1, 1,
                              config.crop_size, config.crop_size))

    # Iterate through dataset
    for cnt, (image, y) in enumerate(data_list):

        image = torch.tensor(image, dtype=torch.float32)

        # Initialization of parameter to optimize
        x = torch.tensor(y.to(device), requires_grad=True)

        #PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()) Optimizing parameters
        sigma = torch.tensor(torch.tensor(config.sigma) * 2 / 255,
                             dtype=torch.float32).to(device)
        alpha = torch.tensor(scale, dtype=torch.float32).to(device)
        #config.alpha

        y = y.to(device)

        params = [x]

        #Initialize Measurement parameters
        conv_cnt = 0
        best_psnr = 0
        best_ssim = 0
        psnr_ssim = 0

        if config.linesearch:
            optimizer = config.optimizer(params,
                                         lr=config.lr,
                                         history_size=10,
                                         line_search='Wolfe',
                                         debug=True)
        else:
            optimizer = config.optimizer(params, lr=lr,
                                         betas=[0.9, 0.8])  #, momentum=0.88)

        scheduler = optim.lr_scheduler.StepLR(optimizer,
                                              step_size=1,
                                              gamma=config.lr_decay)
        denoise = Denoising(optimizer,
                            config.linesearch,
                            scheduler,
                            config.continuous_logistic,
                            image,
                            y,
                            net,
                            sigma,
                            alpha,
                            net_interval=1,
                            writer_tensorboard=None)
        for i in range(2):  #config.n_epochs):
            # =============================================================================
            #             def closure():
            #                 optimizer.zero_grad();
            #                 loss = logposterior(x, y, sigma, alpha, logit[0,:,:,:]);
            #                 loss.backward(retain_graph=True);
            #                 print(loss)
            #                 return loss;
            # =============================================================================
            x, gradient, loss = denoise(x, y, image, i)

            psnr = PSNR(x[0, :, :, :].cpu(), image[0, :, :, :].cpu())
            ssim = c_ssim(((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(
                min=-1, max=1).numpy(),
                          ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
                          data_range=1,
                          gaussian_weights=True)

            #Save psnr in matrix
            psnr_per_step[cnt, i] = psnr.detach().numpy()
            ssim_per_step[cnt, i] = ssim

            # tensorboard
            writer_tensorboard.add_scalar('Optimize/PSNR_of_Image' + str(cnt),
                                          psnr, i)
            writer_tensorboard.add_scalar('Optimize/SSIM_of_Image' + str(cnt),
                                          ssim, i)
            writer_tensorboard.add_scalar('Optimize/Loss_of_Image' + str(cnt),
                                          loss, i)

            # Save best SSIM and PSNR
            if ssim >= best_ssim:
                best_ssim = ssim

            if psnr >= best_psnr:
                best_psnr = psnr
                step = i + 1
                psnr_ssim = ssim
                conv_cnt = 0
            else:
                conv_cnt += 1

            # Save image in list
            image_list[cnt, i] = (x.detach().cpu() + 1) / 2

            #if conv_cnt>config.control_epochs: break;

        psnr = PSNR(x[0, :, :, :].cpu(), image[0, :, :, :].cpu())
        ssim = c_ssim(
            ((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(min=-1,
                                                                max=1).numpy(),
            ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
            data_range=1,
            gaussian_weights=True)

        # tensorboard
        writer_tensorboard.add_scalar('Optimize/Best_PSNR', best_psnr, cnt)
        writer_tensorboard.add_scalar('Optimize/Best_SSIM', best_ssim, cnt)
        writer_tensorboard.add_scalar('Optimize/SSIM_to_best_PSNR', psnr_ssim,
                                      cnt)

        print('Image ', cnt, ': ', psnr, '-', ssim)
        logfile.write('PSNR_each:  %f - step %f\r\n' % (psnr, step))
        logfile.write('PSNR_best: %f\r\n' % best_psnr)
        logfile.write('SSIM_each:  %f\r\n' % ssim)
        logfile.write('SSIM_best:  %f\r\n' % best_ssim)
        best_psnr_sum += best_psnr
        best_ssim_sum += best_ssim
        #if cnt == 1: break;

    psnr_avg = best_psnr_sum / (cnt + 1)
    ssim_avg = best_ssim_sum / (cnt + 1)
    logfile.write('Best_PSNR_avg:  %f\r\n' % psnr_avg)
    logfile.write('Best_SSIM_avg: %f\r\n' % ssim_avg)

    # Logging of average psnr and ssim per step
    log_psnr_per_step = open(
        config.directory.joinpath(description + '_psnr_per_step.txt'), 'w+')
    log_ssim_per_step = open(
        config.directory.joinpath(description + '_ssim_per_step.txt'), 'w+')
    psnr_avg_step = np.mean(psnr_per_step, 0)
    ssim_avg_step = np.mean(ssim_per_step, 0)

    for n in range(psnr_avg_step.shape[0]):
        log_psnr_per_step.write('Step %f: %f\r\n' % (n + 1, psnr_avg_step[n]))
        log_ssim_per_step.write('Step %f: %f\r\n' % (n + 1, ssim_avg_step[n]))

    #print(psnr_avg_step.shape)
    #print(psnr_per_step.shape)
    best_step = np.argmax(psnr_avg_step) + 1

    log_psnr_per_step.write('Best PSNR: %f\r\n' % np.max(psnr_avg_step))
    log_psnr_per_step.write('Step to best PSNR: %f\r\n' % best_step)

    logfile.close()

    # Save images in tensorboard
    for i in range(len(data_list)):
        image_grid = make_grid(image_list[i, best_step - 1],
                               normalize=True,
                               scale_each=True)
        writer_tensorboard.add_image('Image', image_grid, i)

    writer_tensorboard.close()

    return np.max(psnr_avg_step), ssim_avg_step[best_step - 1], best_step
    def __call__(self, x, y, image, step):

        psnr = PSNR(x[0, 0, :, :].cpu(), image[0, 0, :, :].cpu())
        x_plt = (x + 1) / 2
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)

        if step == 0:

            if self.writer_tensorboard != None:
                self.writer_tensorboard.add_scalar('Optimize/PSNR', psnr, step)
                self.writer_tensorboard.add_image('Image', image_grid, step)

            if self.linesearch:  # For LBFGS with linesearch
                x.data.clamp_(min=-1, max=1)
                self.optimizer.zero_grad()
                self.loss = logposterior(x, y, self.cont_logistic, self.sigma,
                                         self.alpha, self.net,
                                         self.net_interval, step)
                self.loss.backward()

                gradient = x.grad
                self.grad = self.optimizer._gather_flat_grad()

        # Closure for LBFGS
        def closure():
            x.data.clamp_(min=-1, max=1)
            self.optimizer.zero_grad()
            loss = logposterior(x, y, self.cont_logistic, self.sigma,
                                self.alpha, self.net, self.net_interval, step)
            if self.linesearch == False: loss.backward()
            print(loss)
            return loss

        # Paramaterupdate: Gradient step
        if self.linesearch:
            # two-loop recursion to compute search direction
            p = self.optimizer.two_loop_recursion(-self.grad)

            # perform line search step
            options = {'closure': closure, 'current_loss': self.loss}  #

            #self.loss, grad, lr, backtracks, clos_evals, grad_evals, desc_dir, fail = self.optimizer.step(p, grad, options=options)
            #self.scheduler.step();

            self.loss, self.grad, lr, _, _, _, _, fail = self.optimizer.step(
                p, self.grad, options=options)
            #self.loss, self.grad, lr, _, _, _, _, fail = self.optimizer.step(options=options)
            print('Fail: ', fail)

            # compute gradient at new iterate
            #self.loss.backward()
            #self.grad = self.optimizer._gather_flat_grad()

            # curvature update
            self.optimizer.curvature_update(self.grad, eps=1e-2, damping=False)

        else:
            self.loss = self.optimizer.step(closure)

#            #Standard Gradient Descent
#            x.data.clamp_(min=-1,max=1)
#            self.loss = logposterior(x, y, self.cont_logistic, self.sigma, self.alpha, self.net, self.net_interval, step);
#            self.loss.backward()
#            print(self.loss)
#            print(x.grad)
#
#            x = x - 0.001*x.grad

        self.scheduler.step()

        psnr = PSNR(x[0, 0, :, :].cpu(), image[0, 0, :, :].cpu())

        x_plt = (x + 1) / 2
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)

        gradient = x.grad
        #print('gradient: ', torch.sum(torch.abs(gradient)))
        #gradient_norm = gradient/torch.max(torch.abs(gradient))
        #gradient_plt = (gradient_norm+1)/2
        #gradient_grid = make_grid(gradient_plt, normalize=True, scale_each=True)

        if step != None:
            if self.writer_tensorboard != None:
                self.writer_tensorboard.add_scalar('Optimize/PSNR', psnr,
                                                   step + 1)
                self.writer_tensorboard.add_image('Image', image_grid,
                                                  step + 1)
                self.writer_tensorboard.add_scalar('Optimize/Loss', self.loss,
                                                   step + 1)

                #print('Step ', step, ': ', loss);
            print('PSNR: ', step, ' - ', psnr)
            print('Loss: ', self.loss)

        return x, gradient, self.loss
Esempio n. 4
0
def optimizeMAP(data_list, scale, net, config):

    # reproducibility
    torch.manual_seed(1)
    np.random.seed(1)

    psnr_sum = 0.
    ssim_sum = 0.
    step_sum = 0.
    cnt = 0

    description = 'Parametertraining_alpha_' + str(scale)

    #writer_tensorboard =  SummaryWriter(comment=description)
    writer_tensorboard = SummaryWriter(config.directory.joinpath(description))
    writer_tensorboard.add_text('Config parameters', config.config_string)

    logfile = open(config.directory.joinpath(description + '.txt'), 'w+')

    for image, y in data_list:

        cnt += 1

        image = torch.tensor(image, dtype=torch.float32)

        # Initialization of parameter to optimize
        x = torch.tensor(y.to(device), requires_grad=True)

        #PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()) Optimizing parameters
        sigma = torch.tensor(config.sigma * 2 / 255,
                             dtype=torch.float32).to(device)
        alpha = torch.tensor(scale, dtype=torch.float32).to(device)

        y = y.to(device)

        params = [x]

        optimizer = config.optimizer(params, lr=config.lr)
        scheduler = optim.lr_scheduler.StepLR(optimizer,
                                              step_size=1,
                                              gamma=config.lr_decay)
        denoise = Denoising(optimizer,
                            scheduler,
                            image,
                            y,
                            net,
                            sigma,
                            alpha,
                            net_interval=1,
                            writer_tensorboard=None)

        conv_cnt = 0.
        best_psnr = 0.
        best_ssim = 0.
        worst_psnr = 0.
        step = 0
        optimal_step = 0.

        for i in range(2):  #config.n_epochs):

            x, gradient = denoise(x, y, image, i)

            psnr = PSNR(x[0, :, :, :].cpu(), image[0, :, :, :].cpu())
            ssim = c_ssim(((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(
                min=-1, max=1).numpy(),
                          ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
                          data_range=1,
                          gaussian_weights=True)
            print('SSIM: ', ssim)

            # Save best SSIM and PSNR
            if ssim >= best_ssim:
                best_ssim = ssim

            if psnr >= best_psnr:
                best_psnr = psnr
                psnr_ssim = ssim
                x_plt = (x + 1) / 2
                optimal_step = i + 1
            else:
                conv_cnt += 1

            if psnr < worst_psnr:
                worst_psnr = psnr

            #if keyboard.is_pressed('s'): break;
            if conv_cnt > 2: break

        psnr = PSNR(x[0, :, :, :].cpu(), image[0, :, :, :].cpu())
        ssim = c_ssim(
            ((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(min=-1,
                                                                max=1).numpy(),
            ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
            data_range=1,
            gaussian_weights=True)

        # tensorboard
        writer_tensorboard.add_scalar('Optimize/PSNR', best_psnr, cnt)
        writer_tensorboard.add_scalar('Optimize/SSIM', best_ssim, cnt)
        writer_tensorboard.add_scalar('Optimize/SSIM_to_best_PSNR', psnr_ssim,
                                      cnt)
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)
        writer_tensorboard.add_image('Image', image_grid, cnt)

        print('Image ', cnt, ': ', psnr, '-', ssim)
        logfile.write('PSNR_each:  %f - step %f\r\n' % (psnr, step))
        logfile.write('PSNR_best: %f\r\n' % best_psnr)
        logfile.write('SSIM_each:  %f\r\n' % ssim)
        logfile.write('SSIM_best:  %f\r\n' % best_ssim)
        psnr_sum += best_psnr
        ssim_sum += best_ssim
        step_sum += optimal_step
        #if cnt == 1: break;

    psnr_avg = psnr_sum / cnt
    ssim_avg = ssim_sum / cnt
    step_avg = step_sum / cnt
    print(psnr_avg)
    print(ssim_avg)
    logfile.write('PSNR_avg:  %f\r\n' % psnr_avg)
    logfile.write('SSIM_avg: %f\r\n' % ssim_avg)

    logfile.close()
    writer_tensorboard.close()

    return psnr_avg, ssim_avg, step_avg
def denoise_parameter(par, config, net):
    
    # reproducibility
    torch.manual_seed(1)
    np.random.seed(1)
    
    # Load datasetloader
    #test_loader = get_loader_cifar('../../../datasets/CIFAR10', 1, train=False, gray_scale=False, num_workers=0); 
    test_loader = get_loader_denoising('../../../datasets/Parameterevaluation', 1, train=False, gray_scale=True, crop_size=[config.crop_size, config.crop_size])  #256
    #Device for computation (CPU or GPU)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    best_psnr_sum = 0
    best_ssim_sum = 0
    cnt = 0
    step = 0
    
    description = 'Evaluation_parameter_par=' + str(par)
    
    logfile = open(config.directory.joinpath(description + '.txt'),'w+')
    
    #writer_tensorboard =  SummaryWriter(comment=description)
    writer_tensorboard =  SummaryWriter(config.directory.joinpath(description))
    writer_tensorboard.add_text('Config parameters', config.config_string)
    
    #PSNR, SSIM - step size Matrix
    psnr_per_step = np.zeros((len(test_loader), config.n_epochs))
    ssim_per_step = np.zeros((len(test_loader), config.n_epochs))
    
    # Iterate through dataset
    for cnt, (image, label) in enumerate(test_loader):
        
        image = torch.tensor(image,dtype=torch.float32)
        
        y = add_noise(image, torch.tensor(25.), torch.tensor(0.))
        
        # Initialization of parameter to optimize
        x = torch.tensor(y.to(device),requires_grad=True);
        
        #PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()) Optimizing parameters
        sigma = torch.tensor(torch.tensor(25.)*2/255, dtype=torch.float32).to(device);
        alpha = torch.tensor(config.alpha, dtype=torch.float32).to(device);
        
        y = y.to(device)
        
        params=[x]
        
        #Initialize Measurement parameters
        conv_cnt = 0
        best_psnr = 0
        best_ssim = 0
        psnr_ssim = 0
        prev_psnr = 0
        prev_x = x.data
        
        if config.linesearch:
            optimizer = config.optimizer(params, lr=config.lr, history_size=10, line_search='Wolfe', debug=True) 
        else:
            optimizer = config.optimizer(params, lr=config.lr) 
        
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=config.lr_decay)
        denoise = Denoising(optimizer, config.linesearch, scheduler, config.continuous_logistic,image, y, net, sigma, alpha, net_interval=1, writer_tensorboard=None)
        for i in range(config.n_epochs):
# =============================================================================
#             def closure():
#                 optimizer.zero_grad();
#                 loss = logposterior(x, y, sigma, alpha, logit[0,:,:,:]);            
#                 loss.backward(retain_graph=True);
#                 print(loss)
#                 return loss;
# =============================================================================
            x, gradient = denoise(x, y, image, i)
            
            psnr = PSNR(x[0,:,:,:].cpu(), image[0,:,:,:].cpu())
            ssim = c_ssim(((x.data[0,0,:,:]+1)/2).cpu().detach().clamp(min=-1,max=1).numpy(), ((image.data[0,0,:,:]+1)/2).cpu().numpy(), data_range=1, gaussian_weights=True)
            
            #Save psnr in matrix
            psnr_per_step[cnt, i] = psnr.detach().numpy()
            ssim_per_step[cnt, i] = ssim
            
            # tensorboard
            writer_tensorboard.add_scalar('Optimize/PSNR_of_Image'+str(cnt), psnr, i)
            writer_tensorboard.add_scalar('Optimize/SSIM_of_Image'+str(cnt), ssim, i)
            
            # Save best SSIM and PSNR
            if ssim >= best_ssim:
                best_ssim = ssim
                
            if psnr >= best_psnr:
                best_psnr = psnr
                step = i+1
                psnr_ssim = ssim
                x_plt = (x+1)/2
                conv_cnt = 0
            else: conv_cnt += 1   

            #Reset
            if psnr-prev_psnr < -1.:
                
    
            #if conv_cnt>config.control_epochs: break;
        
        
        psnr = PSNR(x[0,:,:,:].cpu(), image[0,:,:,:].cpu())
        ssim = c_ssim(((x.data[0,0,:,:]+1)/2).cpu().detach().clamp(min=-1,max=1).numpy(), ((image.data[0,0,:,:]+1)/2).cpu().numpy(), data_range=1, gaussian_weights=True)        
        
        # tensorboard
        writer_tensorboard.add_scalar('Optimize/Best_PSNR', best_psnr, cnt)
        writer_tensorboard.add_scalar('Optimize/Best_SSIM', best_ssim, cnt)
        writer_tensorboard.add_scalar('Optimize/SSIM_to_best_PSNR', psnr_ssim, cnt)
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)
        writer_tensorboard.add_image('Image', image_grid, cnt)
        
        
        print('Image ', cnt, ': ', psnr, '-', ssim)
        logfile.write('PSNR_each:  %f - step %f\r\n' %(psnr,step))
        logfile.write('PSNR_best: %f\r\n' %best_psnr)
        logfile.write('SSIM_each:  %f\r\n' %ssim)
        logfile.write('SSIM_best:  %f\r\n' %best_ssim)
        best_psnr_sum += best_psnr
        best_ssim_sum += best_ssim
        #if cnt == 1: break;
        
    psnr_avg = best_psnr_sum/(cnt+1)
    ssim_avg = best_ssim_sum/(cnt+1)
    logfile.write('Best_PSNR_avg:  %f\r\n' %psnr_avg)
    logfile.write('Best_SSIM_avg: %f\r\n' %ssim_avg)
    
    # Logging of average psnr and ssim per step
    log_psnr_per_step = open(config.directory.joinpath(description + '_psnr_per_step.txt'),'w+')
    log_ssim_per_step = open(config.directory.joinpath(description + '_ssim_per_step.txt'),'w+')
    psnr_avg_step = np.mean(psnr_per_step, 0)
    ssim_avg_step = np.mean(ssim_per_step, 0)
    
    for n in range(psnr_avg_step.shape[0]):
        log_psnr_per_step.write('Step %f: %f\r\n' %(n, psnr_avg_step[n]))
        log_ssim_per_step.write('Step %f: %f\r\n' %(n, ssim_avg_step[n]))
       
    print(psnr_avg_step.shape)
    print(psnr_per_step.shape)
    best_step = np.argmax(psnr_avg_step)
    
    log_psnr_per_step.write('Best PSNR: %f\r\n' %np.max(psnr_avg_step))
    log_psnr_per_step.write('Step to best PSNR: %f\r\n' %best_step)
    
    logfile.close()
    writer_tensorboard.close()
    
    return np.max(psnr_avg_step), ssim_avg_step[best_step], best_step;
    
    
# =============================================================================
#     #Plotting
#     fig, axs = plt.subplots(3,1, figsize=(8,8))    
#     axs[0].imshow(y[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     axs[1].imshow(x[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     axs[2].imshow(image[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     
#     res = x[0,0,:,:].cpu().detach().numpy()
#     orig = image[0,0,:,:].cpu().detach().numpy()
#     
#     
#     #plt.imshow(x[0,0,:,:].cpu().detach().numpy(),cmap='gray')
#     #plt.colorbar()
#     print('Noisy_Image: ', PSNR(y[0,0,:,:].cpu(), image[0,0,:,:].cpu()))
#     print('Denoised_Image: ', PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()))
#     
#     #save_image(x, 'Denoised.png')
# =============================================================================
    
def denoise_dataset(dataset, config, net):
    
    # reproducibility
    torch.manual_seed(1)
    np.random.seed(1)
    
    # Load datasetloader
    #test_loader = get_loader_cifar('../../../datasets/CIFAR10', 1, train=False, gray_scale=False, num_workers=0); 
    test_loader = get_loader_denoising('../../../datasets/' + dataset, 1, train=False, gray_scale=True, crop_size=[config.crop_size, config.crop_size])  #256
    #Device for computation (CPU or GPU)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    psnr_sum = 0
    ssim_sum = 0
    cnt = 0
    step = 0
    
    description = 'Denoising_dataset_' + dataset
    
    logfile = open(config.directory.joinpath(description + '.txt'),'w+')
    
    #writer_tensorboard =  SummaryWriter(comment=description)
    writer_tensorboard =  SummaryWriter(config.directory.joinpath(description))
    writer_tensorboard.add_text('Config parameters', config.config_string)
    
    # Iterate through dataset
    for image, label in test_loader:
        cnt += 1
        
        image = torch.tensor(image,dtype=torch.float32)
        
        y = add_noise(image, torch.tensor(config.sigma), torch.tensor(0.))
        
        # Initialization of parameter to optimize
        x = torch.tensor(y.to(device),requires_grad=True);
        
        #PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()) Optimizing parameters
        sigma = torch.tensor(torch.tensor(25.)*2/255, dtype=torch.float32).to(device);
        alpha = torch.tensor(config.alpha, dtype=torch.float32).to(device);
        
        y = y.to(device)
        
        params=[x]
        
        #Initialize Measurement parameters
        conv_cnt = 0
        best_psnr = 0
        best_ssim = 0
        psnr_ssim = 0
        
        if config.linesearch:
            optimizer = config.optimizer(params, lr=config.lr, history_size=10, line_search='Wolfe', debug=True) 
        else:
            optimizer = config.optimizer(params, lr=config.lr, betas=[0.9,0.8]) 
        
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=config.lr_decay)
        denoise = Denoising(optimizer, config.linesearch, scheduler, config.continuous_logistic,image, y, net, sigma, alpha, net_interval=1, writer_tensorboard=None)
        for i in range(config.n_epochs):
# =============================================================================
#             def closure():
#                 optimizer.zero_grad();
#                 loss = logposterior(x, y, sigma, alpha, logit[0,:,:,:]);            
#                 loss.backward(retain_graph=True);
#                 print(loss)
#                 return loss;
# =============================================================================
            x, gradient, loss = denoise(x, y, image, i)
            
            psnr = PSNR(x[0,:,:,:].cpu(), image[0,:,:,:].cpu())
            ssim = c_ssim(((x.data[0,0,:,:]+1)/2).cpu().detach().clamp(min=-1,max=1).numpy(), ((image.data[0,0,:,:]+1)/2).cpu().numpy(), data_range=1, gaussian_weights=True)
            #print('SSIM: ', ssim)
            
            # Save best SSIM and PSNR
            if ssim >= best_ssim:
                best_ssim = ssim
                
            if psnr >= best_psnr:
                best_psnr = psnr
                step = i+1
                psnr_ssim = ssim
                conv_cnt = 0
            else: 
                conv_cnt += 1
    
            #if conv_cnt>config.control_epochs: break;
            
            #if x.grad.sum().abs() < 10 and i > 50: break;
        
        
        psnr = PSNR(x[0,:,:,:].cpu().clamp(min=-1,max=1), image[0,:,:,:].cpu())
        ssim = c_ssim(((x.data[0,0,:,:]+1)/2).cpu().detach().clamp(min=0,max=1).numpy(), ((image.data[0,0,:,:]+1)/2).cpu().numpy(), data_range=1, gaussian_weights=True)        
        
        # tensorboard
        x_plt = (x+1)/2
        writer_tensorboard.add_scalar('Optimize/Best_PSNR', best_psnr, cnt)
        writer_tensorboard.add_scalar('Optimize/Best_SSIM', best_ssim, cnt)
        writer_tensorboard.add_scalar('Optimize/SSIM_to_best_PSNR', psnr_ssim, cnt)
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)
        writer_tensorboard.add_image('Image', image_grid, cnt)
        
        
        print('Image ', cnt, ': ', psnr, '-', ssim)
        logfile.write('PSNR_each:  %f - step %f\r\n' %(psnr,step))
        logfile.write('PSNR_best: %f\r\n' %best_psnr)
        logfile.write('SSIM_each:  %f\r\n' %ssim)
        logfile.write('SSIM_best:  %f\r\n' %best_ssim)
        psnr_sum += psnr
        ssim_sum += ssim
        #if cnt == 1: break;
        
    psnr_avg = psnr_sum/cnt
    ssim_avg = ssim_sum/cnt
    print(psnr_avg)
    print(ssim_avg)
    logfile.write('PSNR_avg:  %f\r\n' %psnr_avg)
    logfile.write('SSIM_avg: %f\r\n' %ssim_avg)
    
    logfile.close()
    writer_tensorboard.close()
    
    return psnr_avg, ssim_avg
    
    
# =============================================================================
#     #Plotting
#     fig, axs = plt.subplots(3,1, figsize=(8,8))    
#     axs[0].imshow(y[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     axs[1].imshow(x[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     axs[2].imshow(image[0,0,:,:].cpu().detach().numpy(), cmap='gray')
#     
#     res = x[0,0,:,:].cpu().detach().numpy()
#     orig = image[0,0,:,:].cpu().detach().numpy()
#     
#     
#     #plt.imshow(x[0,0,:,:].cpu().detach().numpy(),cmap='gray')
#     #plt.colorbar()
#     print('Noisy_Image: ', PSNR(y[0,0,:,:].cpu(), image[0,0,:,:].cpu()))
#     print('Denoised_Image: ', PSNR(x[0,0,:,:].cpu(), image[0,0,:,:].cpu()))
#     
#     #save_image(x, 'Denoised.png')
# =============================================================================
    
Esempio n. 7
0
    start = time.time()
    for i in range(100):  #config.n_epochs):
        #with torch.no_grad():
        #x.data.clamp_(min=-1,max=1)
        #torch.set_grad_enabled(True)
        #        x_new = torch.tensor(x.detach().to(device),requires_grad=True)
        #
        #        params=[x_new]
        #
        #        optimizer = config.optimizer(params, lr=config.lr)
        #        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=config.lr_decay)
        #        denoise = Denoising(optimizer, scheduler, image, y, net, sigma, alpha, net_interval=1, writer_tensorboard=writer_tensorboard)

        x, gradient = denoise(x, y, image, i)

        psnr = PSNR(x[0, :, :, :].cpu(), image[0, :, :, :].cpu())
        ssim = c_ssim(
            ((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(min=-1,
                                                                max=1).numpy(),
            ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
            data_range=1,
            gaussian_weights=True)
        print('SSIM: ', ssim)

        # Save best SSIM and PSNR
        if ssim >= best_ssim:
            best_ssim = ssim

        if psnr >= best_psnr:
            best_psnr = psnr
        else:
    def __call__(self, x, y, image, step):

        x_plt = (x + 1) / 2
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)

        if step == 0:
            psnr = PSNR(x[0, 0, :, :].cpu(), image[0, 0, :, :].cpu())
            ssim = c_ssim(((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(
                min=-1, max=1).numpy(),
                          ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
                          data_range=1,
                          gaussian_weights=True)

            if self.writer_tensorboard != None:
                self.writer_tensorboard.add_scalar('PSNR', psnr, step)
                self.writer_tensorboard.add_scalar('SSIM', ssim, step + 1)
                self.writer_tensorboard.add_image('Image', image_grid, step)

        #self.optimizer.zero_grad();
        #loss = logposterior(x, y, self.sigma, self.alpha, self.net, self.net_interval, step); #loss = logposterior(x, y, sigma, alpha, net);
        #loss.backward(retain_graph=True);

        # Closure for LBFGS
        def closure():
            x.data.clamp_(min=-1, max=1)
            self.optimizer.zero_grad()
            loss = logposterior(x, y, self.sigma, self.alpha, self.net,
                                self.net_interval, step)
            loss.backward()  #retain_graph=True);
            print(loss)
            return loss

        self.optimizer.step(closure)
        self.scheduler.step()

        psnr = PSNR(x[0, 0, :, :].cpu(), image[0, 0, :, :].cpu())
        ssim = c_ssim(
            ((x.data[0, 0, :, :] + 1) / 2).cpu().detach().clamp(min=-1,
                                                                max=1).numpy(),
            ((image.data[0, 0, :, :] + 1) / 2).cpu().numpy(),
            data_range=1,
            gaussian_weights=True)

        x_plt = (x + 1) / 2
        image_grid = make_grid(x_plt, normalize=True, scale_each=True)

        gradient = x.grad
        #print('gradient: ', torch.sum(torch.abs(gradient)))
        gradient_norm = gradient / torch.max(torch.abs(gradient))
        gradient_plt = (gradient_norm + 1) / 2
        #gradient_grid = make_grid(gradient_plt, normalize=True, scale_each=True)

        if step != None:
            if self.writer_tensorboard != None:
                self.writer_tensorboard.add_scalar('PSNR', psnr, step + 1)
                self.writer_tensorboard.add_scalar('SSIM', ssim, step + 1)
                self.writer_tensorboard.add_image('Image', image_grid,
                                                  step + 1)
                #self.writer_tensorboard.add_image('Gradient', gradient_grid, step+1)

                #print('Step ', step, ': ', loss);
            print('PSNR: ', step, ' - ', psnr)

        return x, gradient