class ECRadRayManipulator(object):
    '''
    classdocs
    '''
    def __init__(self, ECRad_result_file):
        '''
        Constructor
        '''
        self.org_results_file = ECRad_result_file
        self.ECRad_results = ECRadResults()
        self.ECRad_results.from_mat_file(ECRad_result_file)
        self.N_ch = self.ECRad_results.Scenario.ray_launch[0]["f"]
        self.N_ray = self.ECRad_results.Config["Physics"]["N_ray"]
        if (self.ECRad_results.Config["Physics"]["considered_modes"] == 1):
            self.modes = ["X"]
        elif (self.ECRad_results.Config["Physics"]["considered_modes"] == 2):
            self.modes = ["O"]
        elif (self.ECRad_results.Config["Physics"]["considered_modes"] == 3):
            self.modes = ["X", "O"]
        else:
            raise ValueError("Invalid value in considered modes")

    def get_Rz_single_ray(self, it, ich, mode="X", iray=0):
        if (self.N_ray == 1):
            R = np.sqrt(self.ECRad_results.ray["x"+mode][it][ich]**2 + \
                        self.ECRad_results.ray["y"+mode][it][ich]**2)
            return R, self.ECRad_results.ray["z" + mode][it][ich]
        else:
            R = np.sqrt(self.ECRad_results.ray["x"+mode][it][ich][iray]**2 + \
                        self.ECRad_results.ray["y"+mode][it][ich][iray]**2)
            return R, self.ECRad_results.ray["z" + mode][it][ich][iray]

    def get_field_single_ray(self, field, it, ich, mode="X", iray=0):
        if (self.N_ray == 1):
            return self.ECRad_results.ray[field + mode][it][ich]
        else:
            return self.ECRad_results.ray[field + mode][it][ich][iray]

    def set_field_single_ray(self, field, values, it, ich, mode="X", iray=0):
        if (self.N_ray == 1):
            if (self.ECRad_results.ray[field + mode][it][ich].shape !=
                    values.shape):
                raise ValueError(
                    "The new values must have the same shape as the original values"
                )
            self.ECRad_results.ray[field + mode][it][ich] = values
        else:
            if (self.ECRad_results.ray[field + mode][it][ich][iray].shape !=
                    values.shape):
                raise ValueError(
                    "The new values must have the same shape as the original values"
                )
            self.ECRad_results.ray[field + mode][it][ich][iray] = values

    def save(self, new_filename, comment=""):
        if (new_filename == self.org_results_file):
            print("This routine does not allow overwriting of the old file!")
            return
        self.ECRad_results.to_mat_file(new_filename, comment)
Esempio n. 2
0
def manipiulate_rays(result_file_in, result_file_out):
    res = ECRadResults()
    res.from_mat_file(result_file_in)
    for index in range(len(res.time)):
        for ich in range(len(res.Scenario.ray_launch[index]["f"])):
            for mode in res.modes:
                if (res.Config["Physics"]["N_ray"] > 1):
                    for iray in range(len(res.ray["s" + mode][index][ich])):
                        res.ray["Te" + mode][index][ich][iray][:] /= 2.0
                else:
                    res.ray["Te" + mode][index][ich][:] /= 2.0
    res.to_mat_file(result_file_out)
def diag_weight_stand_alone(fig,
                            ax,
                            Result_file,
                            time_point,
                            ch,
                            DistWaveFile=None):
    Results = ECRadResults()
    Results.from_mat_file(Result_file)
    fig = diag_weight(fig,
                      Results,
                      time_point,
                      ch,
                      DistWaveFile=DistWaveFile,
                      ax=ax)
def repair_ECRad_results(folder_in, folder_out=None):
    # Allows to make bulk modification of result files using glob
    # If folder_out is True it overwrites!
    filelist = glob.glob(os.path.join(folder_in, "*.mat"))
#     filelist = ['/tokp/work/sdenk/DRELAX_Results/ECRad_35662_ECECTACTC_run0208.mat']
    cur_result = ECRadResults()
    for filename in filelist:
        cur_result.reset()
        cur_result.from_mat_file(filename)
        # Enter bulk modifcations here
        cur_result.Scenario.used_diags_dict["CTC"].diag = "CTC"
        if(folder_out is None):
            cur_result.to_mat_file(filename)
        else:
            cur_result.to_mat_file(os.path.join(folder_out, os.path.basename(filename)))    
def ECRH_weight(fig,
                Result_file,
                time_point,
                ibeam,
                DistWaveFile,
                beam_freq=105.e9,
                ax=None):
    # Currently only RELAX/LUKE distributions supported
    # Extension for GENE trivial though
    if (ax is None):
        ax = fig.add_subplot(111)
    harmonic_n = 2
    Results = ECRadResults()
    Results.from_mat_file(Result_file)
    itime = np.argmin(np.abs(time_point -
                             Results.Scenario.plasma_dict["time"]))
    time_cor = Results.Scenario.plasma_dict["time"][itime]
    EQObj = EQDataExt(Results.Scenario.shot)
    EQObj.set_slices_from_ext(Results.Scenario.plasma_dict["time"],
                              Results.Scenario.plasma_dict["eq_data"])
    B_ax = EQObj.get_B_on_axis(time_cor)
    EqSlice = EQObj.GetSlice(time_point)
    dist_wave_mat = loadmat(DistWaveFile)
    dist_obj = load_f_from_mat(DistWaveFile, True)
    f_inter = make_f_inter(Results.Config["Physics"]["dstf"],
                           dist_obj=dist_obj,
                           EQObj=EQObj,
                           time=time_cor)[0]
    linear_beam = read_waves_mat_to_beam(dist_wave_mat,
                                         EqSlice,
                                         use_wave_prefix=None)
    itme = np.argmin(np.abs(Results.Scenario.plasma_dict["time"] - time_point))
    Te_spl = InterpolatedUnivariateSpline(Results.Scenario.plasma_dict[Results.Scenario.plasma_dict["prof_reference"]][itime], \
                                          np.log(Results.Scenario.plasma_dict["Te"][itme]))
    ne_spl = InterpolatedUnivariateSpline(Results.Scenario.plasma_dict[Results.Scenario.plasma_dict["prof_reference"]][itime], \
                                          np.log(Results.Scenario.plasma_dict["ne"][itme]))
    m = 40
    n = 80
    u_perp_grid = np.linspace(0.0, np.max(dist_obj.u), m)
    u_par_grid = np.linspace(-np.max(dist_obj.u), np.max(f_inter.x), n)
    diag_weight_f = np.zeros((m, n))
    for ray in linear_beam.rays[ibeam]:
        tot_pw_ray, cur_PDP = make_PowerDepo_3D_for_ray(ray, beam_freq, "Re", harmonic_n, \
                                                        B_ax, EqSlice, Te_spl, ne_spl, f_inter, \
                                                        N_pnts=100, fast= True)
        for irhop in range(len(cur_PDP.rho)):
            print(irhop + 1, " / ", len(cur_PDP.rho))
            intercep_points = find_cell_interceps(u_par_grid, u_perp_grid,
                                                  cur_PDP, irhop)
            for i_intercep, intercep_point in enumerate(intercep_points[:-1]):
                i = np.argmin(np.abs(intercep_point[0] - u_par_grid))
                j = np.argmin(np.abs(intercep_point[1] - u_perp_grid))
                if (u_par_grid[i] > intercep_point[0]):
                    i -= 1
                if (u_perp_grid[j] > intercep_point[1]):
                    j -= 1
                if (i < 0 or j < 0):
                    continue  # only happens at the lower bounds, where u_perp is very small and, therefore, also j is very small
                # Compute arclength
                t = np.zeros(cur_PDP.u_par[irhop].shape)
                for i_res_line in range(1, len(cur_PDP.u_par[irhop])):
                    t[i_res_line] = t[i_res_line - 1] + np.sqrt((cur_PDP.u_par[irhop][i_res_line] - cur_PDP.u_par[irhop][i_res_line - 1])**2 + \
                                                                (cur_PDP.u_perp[irhop][i_res_line] - cur_PDP.u_perp[irhop][i_res_line - 1])**2)
                t /= np.max(t)  # Normalize this
                # Sort
                t_spl = InterpolatedUnivariateSpline(cur_PDP.u_par[irhop], t)
                try:
                    PDP_val_spl = InterpolatedUnivariateSpline(
                        t, cur_PDP.val[irhop])
                except Exception as e:
                    print(e)
                t1 = t_spl(intercep_point[0])
                t2 = t_spl(intercep_points[i_intercep + 1][0])
                diag_weight_f[j,i] += tot_pw_ray * \
                                        PDP_val_spl.integral(t1, t2)
    ax.contourf(u_perp_grid, u_par_grid, diag_weight_f.T / np.max(diag_weight_f.flatten()), \
                 levels = np.linspace(0.01,1,10), cmap = plt.get_cmap("Greens"))
    m = cm.ScalarMappable(cmap=plt.cm.get_cmap("Greens"))
    m.set_array(np.linspace(0.01, 1.0, 10))
    cb_diag = fig.colorbar(m, pad=0.15, ticks=[0.0, 0.5, 1.0])
    cb_diag.set_label(r"$\mathrm{d}P/\mathrm{d}s [\si{{a.u.}}]$")
    ax.set_ylabel(r"$u_\parallel$")
    ax.set_xlabel(r"$u_\perp$")
    ax.set_aspect("equal")
    return fig