model.fit(train_data, train_labels, batch_size=batchsize, epochs=10, verbose=2) test_predict = model.predict(test_data, batch_size=batchsize, verbose=0) fpr, tpr, thresholds = roc_curve(flatten_test_labels, test_predict[:, 1], pos_label=1) test_auc_value = auc(fpr, tpr) auc_values.append(test_auc_value) plt.plot(range(0,500,10),auc_values) plt.title('Test AUC for filtered EEG') plt.ylabel('AUC') plt.xlabel('epoch') plt.show() """ # model.save('***.h5') # generate prediction probabilities train_predict = model.predict(train_data, batch_size=batchsize, verbose=0) test_predict = model.predict(test_data, batch_size=batchsize, verbose=0) print(model.evaluate(test_data, test_labels, batch_size=batchsize)) # Calculate AUC fpr, tpr, thresholds = roc_curve(flatten_train_labels, train_predict[:, 1], pos_label=1) print("Training auc:") train_auc_value = auc(fpr, tpr) print(train_auc_value) fpr, tpr, thresholds = roc_curve(flatten_test_labels, test_predict[:, 1], pos_label=1) print("Testing auc:") test_auc_value = auc(fpr, tpr) print(test_auc_value)
validation_data=(X_train_valid[test], y_train_valid[test]), callbacks=[checkpointer], class_weight=class_weights) # print( '------------------------------------------------------------------------' ) print(f'Training for fold {fold_no} ...') # Evaluation de la performance sur l'ensemble test probs = model.predict(X_train_valid[test]) preds = probs.argmax(axis=-1) scores = model.evaluate(X_train_valid[test], y_train_valid[test], verbose=0) auc = roc_auc_score(y_train_valid[test], preds) acc_per_fold.append(scores[1] * 100) auc_per_fold.append(auc) # On passe à un autre pli fold_no = fold_no + 1 # Evaluation finale sur l'ensemble de test probs = model.predict(X_test) preds = probs.argmax(axis=-1) acc = np.mean(preds == y_test.argmax(axis=-1))
optimizer='adam', metrics=['accuracy']) history = model.fit(train_data, train_labels, batch_size=batchsize, epochs=300, verbose=2) # model.save('***.h5') # generate prediction probabilities train_predict = model.predict(train_data, batch_size=batchsize, verbose=0) validation_predict = model.predict(validation_data, batch_size=batchsize, verbose=0) test_predict = model.predict(test_data, batch_size=batchsize, verbose=0) validation_accuracy = model.evaluate(validation_data, validation_labels, batch_size=batchsize) print(validation_accuracy) test_accuracy = model.evaluate(test_data, test_labels, batch_size=batchsize) print(test_accuracy) # Calculate AUC fpr, tpr, thresholds = roc_curve(flatten_train_labels, train_predict[:, 1], pos_label=1) print("Training auc:") train_auc_value = auc(fpr, tpr) print(train_auc_value)