def evm_train_process(classes_to_process, feature_dic, args_evm, gpu, Q,
                      done_event):
    with torch.no_grad():
        evm_iterator_i = EVM_Training(classes_to_process, feature_dic,
                                      args_evm, gpu)
        evm_model = OrderedDict()
        n = 0
        for evm in enumerate(evm_iterator_i):
            # evm_model[evm[1][1][0]] = evm[1][1][1]
            Q.put((evm[1][1][0], evm[1][1][1]))
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
        done_event.wait()
        del evm
        return
Esempio n. 2
0
        for j, im_name in enumerate(image_names):
            label = feedback.get_label(im_name)
            if label > number_of_known_classes:
                class_to_process.add(label)
                feature_j = FV[j : (j + 1), :].clone().double()
                if label in features_dict_train:
                    features_dict_train[label] = torch.cat((features_dict_train[label], feature_j), 0)
                else:
                    nu = nu + 1
                    features_dict_train[label] = feature_j

        if len(class_to_process) > 0:
            class_to_process = sorted(list(class_to_process))
            list_of_tuples = [0.0] * len(class_to_process)
            evm_iterator_i = EVM_Training(class_to_process, features_dict_train, args_evm_unknown, 0)
            evm_counter = 0
            for evm in enumerate(evm_iterator_i):
                # label = evm[1][1][0]
                # mini_evm = evm[1][1][1]
                list_of_tuples[evm_counter] = (evm[1][1][0], evm[1][1][1])
                evm_counter = evm_counter + 1

            for j, class_number in enumerate(class_to_process):
                # evm is an OrderedDict
                assert list_of_tuples[j][0] == class_number
                evm_model[class_number] = list_of_tuples[j][1]

            del evm_iterator_i, evm
            gc.collect()
            torch.cuda.empty_cache()
Esempio n. 3
0
                                to_be_delete = to_be_delete + index
                                nu = nu + 1
                                class_number = int(nu + number_of_discovered_classes + number_of_known_classes)
                                features_dict_incremental[class_number] = (
                                    torch.from_numpy(np.array([FVs_residual[jjj] for jjj in index]))
                                ).double()  # .cuda()
                                class_to_process.append(class_number)

                    if ((len(class_to_process) > 0) and (number_of_discovered_classes > 0)) or (
                        len(class_to_process) > 2
                    ):

                        list_of_tuples = [0.0] * len(class_to_process)
                        evm_iterator_incremental = EVM_Training(
                            class_to_process, features_dict_incremental, args_evm_incremental, 0
                        )
                        evm_counter = 0
                        for evm in enumerate(evm_iterator_incremental):
                            # label = evm[1][1][0]
                            # mini_evm = evm[1][1][1]
                            list_of_tuples[evm_counter] = (evm[1][1][0], evm[1][1][1])
                            evm_counter = evm_counter + 1

                        for j, class_number in enumerate(class_to_process):
                            # evm is an OrderedDict
                            assert list_of_tuples[j][0] == class_number
                            evm_model_incremental[class_number] = list_of_tuples[j][1]

                        del evm_iterator_incremental, evm
                        gc.collect()