Esempio n. 1
0
 def _init_layers(self):
     self.relu = nn.ReLU(inplace=True)
     self.cls_convs = nn.ModuleList()
     self.reg_convs = nn.ModuleList()
     for i in range(self.stacked_convs):
         chn = self.in_channels if i == 0 else self.feat_channels
         self.cls_convs.append(
             ConvModule(chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg))
         self.reg_convs.append(
             ConvModule(chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg))
     self.atss_cls = nn.Conv2d(self.feat_channels,
                               self.num_anchors * self.cls_out_channels,
                               3,
                               padding=1)
     self.atss_reg = nn.Conv2d(self.feat_channels,
                               self.num_anchors * 4,
                               3,
                               padding=1)
     self.atss_centerness = nn.Conv2d(self.feat_channels,
                                      self.num_anchors * 1,
                                      3,
                                      padding=1)
     self.scales = nn.ModuleList([Scale(1.0) for _ in self.anchor_strides])
Esempio n. 2
0
    def _init_layers(self):
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=self.norm_cfg is None))
            self.reg_convs.append(
                ConvModule(chn,
                           self.feat_channels,
                           3,
                           stride=1,
                           padding=1,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=self.norm_cfg is None))
        self.fcos_cls = nn.Conv2d(self.feat_channels,
                                  self.cls_out_channels,
                                  3,
                                  padding=1)
        self.fcos_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
        self.fcos_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)

        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
Esempio n. 3
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super(BasicResBlock, self).__init__()

        # main path
        self.conv1 = ConvModule(in_channels,
                                in_channels,
                                kernel_size=3,
                                padding=1,
                                bias=False,
                                conv_cfg=conv_cfg,
                                norm_cfg=norm_cfg)
        self.conv2 = ConvModule(in_channels,
                                out_channels,
                                kernel_size=1,
                                bias=False,
                                conv_cfg=conv_cfg,
                                norm_cfg=norm_cfg,
                                act_cfg=None)

        # identity path
        self.conv_identity = ConvModule(in_channels,
                                        out_channels,
                                        kernel_size=1,
                                        conv_cfg=conv_cfg,
                                        norm_cfg=norm_cfg,
                                        act_cfg=None)

        self.relu = nn.ReLU(inplace=True)
Esempio n. 4
0
 def __init__(self, with_conv_res=True, *args, **kwargs):
     super(HTCMaskHead, self).__init__(*args, **kwargs)
     self.with_conv_res = with_conv_res
     if self.with_conv_res:
         self.conv_res = ConvModule(
             self.conv_out_channels,
             self.conv_out_channels,
             1,
             conv_cfg=self.conv_cfg,
             norm_cfg=self.norm_cfg)
    def __init__(self, in_channels, out_channels, norm_cfg, act_cfg):
        super().__init__()
        self.in_channels = in_channels
        self.conv_out_channels = out_channels
        self.conv_kernel_size = 3
        self.convs = nn.ModuleList()
        dilations = [(1,6), (1,1), (6,21), (18,15), (6,3)]

        for i in range(5):
            padding = dilations[i]
            self.convs.append(
                DepthwiseSeparableConvModule(
                    self.in_channels,
                    self.in_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    dilation=dilations[i]))
        self.conv = ConvModule(
                    self.in_channels*5,
                    self.conv_out_channels,
                    1,
                    padding=0,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg)
Esempio n. 6
0
    def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))

        self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.feat_channels, self.num_anchors * 2,
                                    1)
        self.feature_adaption_cls = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.feature_adaption_reg = FeatureAdaption(
            self.feat_channels,
            self.feat_channels,
            kernel_size=3,
            deformable_groups=self.deformable_groups)
        self.retina_cls = MaskedConv2d(
            self.feat_channels,
            self.num_anchors * self.cls_out_channels,
            3,
            padding=1)
        self.retina_reg = MaskedConv2d(
            self.feat_channels, self.num_anchors * 4, 3, padding=1)
 def _init_layers(self):
     self.relu = nn.ReLU(inplace=True)
     self.cls_convs = nn.ModuleList()
     self.reg_convs = nn.ModuleList()
     for i in range(self.num_ins):
         cls_convs = nn.ModuleList()
         reg_convs = nn.ModuleList()
         for i in range(self.stacked_convs):
             chn = self.in_channels if i == 0 else self.feat_channels
             cls_convs.append(
                 ConvModule(
                     chn,
                     self.feat_channels,
                     3,
                     stride=1,
                     padding=1,
                     conv_cfg=self.conv_cfg,
                     norm_cfg=self.norm_cfg))
             reg_convs.append(
                 ConvModule(
                     chn,
                     self.feat_channels,
                     3,
                     stride=1,
                     padding=1,
                     conv_cfg=self.conv_cfg,
                     norm_cfg=self.norm_cfg))
         self.cls_convs.append(cls_convs)
         self.reg_convs.append(reg_convs)
     for i in range(self.stacked_convs):
         for j in range(1, self.num_ins):
             self.cls_convs[j][i].conv = self.cls_convs[0][i].conv
             self.reg_convs[j][i].conv = self.reg_convs[0][i].conv
     self.retina_cls = nn.Conv2d(
         self.feat_channels,
         self.num_anchors * self.cls_out_channels,
         3,
         padding=1)
     self.retina_reg = nn.Conv2d(
         self.feat_channels, self.num_anchors * 4, 3, padding=1)
Esempio n. 8
0
class HTCMaskHead(FCNMaskHead):

    def __init__(self, with_conv_res=True, *args, **kwargs):
        super(HTCMaskHead, self).__init__(*args, **kwargs)
        self.with_conv_res = with_conv_res
        if self.with_conv_res:
            self.conv_res = ConvModule(
                self.conv_out_channels,
                self.conv_out_channels,
                1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg)

    def init_weights(self):
        super(HTCMaskHead, self).init_weights()
        if self.with_conv_res:
            self.conv_res.init_weights()

    def forward(self, x, res_feat=None, return_logits=True, return_feat=True):
        if res_feat is not None:
            assert self.with_conv_res
            res_feat = self.conv_res(res_feat)
            x = x + res_feat
        for conv in self.convs:
            x = conv(x)
        res_feat = x
        outs = []
        if return_logits:
            x = self.upsample(x)
            if self.upsample_method == 'deconv':
                x = self.relu(x)
            mask_pred = self.conv_logits(x)
            outs.append(mask_pred)
        if return_feat:
            outs.append(res_feat)
        return outs if len(outs) > 1 else outs[0]
Esempio n. 9
0
    def _add_conv_fc_branch(self,
                            num_branch_convs,
                            num_branch_fcs,
                            in_channels,
                            is_shared=False):
        """Add shared or separable branch

        convs -> avg pool (optional) -> fcs
        """
        last_layer_dim = in_channels
        # add branch specific conv layers
        branch_convs = nn.ModuleList()
        if num_branch_convs > 0:
            for i in range(num_branch_convs):
                conv_in_channels = (last_layer_dim
                                    if i == 0 else self.conv_out_channels)
                branch_convs.append(
                    ConvModule(conv_in_channels,
                               self.conv_out_channels,
                               3,
                               padding=1,
                               conv_cfg=self.conv_cfg,
                               norm_cfg=self.norm_cfg,
                               act_cfg=self.act_cfg))
            last_layer_dim = self.conv_out_channels
        # add branch specific fc layers
        branch_fcs = nn.ModuleList()
        if num_branch_fcs > 0:
            # for shared branch, only consider self.with_avg_pool
            # for separated branches, also consider self.num_shared_fcs
            if (is_shared
                    or self.num_shared_fcs == 0) and not self.with_avg_pool:
                last_layer_dim *= self.roi_feat_area
            for i in range(num_branch_fcs):
                fc_in_channels = (last_layer_dim
                                  if i == 0 else self.fc_out_channels)
                branch_fcs.append(
                    nn.Linear(fc_in_channels, self.fc_out_channels))
            last_layer_dim = self.fc_out_channels
        return branch_convs, branch_fcs, last_layer_dim
Esempio n. 10
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 num_outs,
                 start_level=0,
                 end_level=-1,
                 add_extra_convs=False,
                 extra_convs_on_inputs=True,
                 relu_before_extra_convs=False,
                 no_norm_on_lateral=False,
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=None):
        super(TWOWAYFPN, self).__init__()
        assert isinstance(in_channels, list)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_ins = len(in_channels)
        self.num_outs = num_outs
        self.relu_before_extra_convs = relu_before_extra_convs
        self.no_norm_on_lateral = no_norm_on_lateral
        self.fp16_enabled = False

        if end_level == -1:
            self.backbone_end_level = self.num_ins
            assert num_outs >= self.num_ins - start_level
        else:
            # if end_level < inputs, no extra level is allowed
            self.backbone_end_level = end_level
            assert end_level <= len(in_channels)
            assert num_outs == end_level - start_level
        self.start_level = start_level
        self.end_level = end_level
        self.add_extra_convs = add_extra_convs
        self.extra_convs_on_inputs = extra_convs_on_inputs

        self.lateral_convs_top = nn.ModuleList()
        self.lateral_convs_bottom = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()

        for i in range(self.start_level, self.backbone_end_level):
            l_conv = ConvModule(
                in_channels[i],
                out_channels,
                1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg if not self.no_norm_on_lateral else None,
                act_cfg=act_cfg,
                inplace=False)

            self.lateral_convs_top.append(l_conv)

        for i in range(self.backbone_end_level - 1, self.start_level - 1, -1):
            l_conv = ConvModule(
                in_channels[i],
                out_channels,
                1,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg if not self.no_norm_on_lateral else None,
                act_cfg=act_cfg,
                inplace=False)
            fpn_conv = ConvModule(out_channels,
                                  out_channels,
                                  3,
                                  padding=1,
                                  conv_cfg=conv_cfg,
                                  norm_cfg=norm_cfg,
                                  act_cfg=act_cfg,
                                  inplace=False)

            self.lateral_convs_bottom.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        # add extra conv layers (e.g., RetinaNet)
        extra_levels = num_outs - self.backbone_end_level + self.start_level
        if add_extra_convs and extra_levels >= 1:
            for i in range(extra_levels):
                if i == 0 and self.extra_convs_on_inputs:
                    in_channels = self.in_channels[self.backbone_end_level - 1]
                else:
                    in_channels = out_channels
                extra_fpn_conv = ConvModule(in_channels,
                                            out_channels,
                                            3,
                                            stride=2,
                                            padding=1,
                                            conv_cfg=conv_cfg,
                                            norm_cfg=norm_cfg,
                                            act_cfg=act_cfg,
                                            inplace=False)
                self.fpn_convs.append(extra_fpn_conv)
Esempio n. 11
0
    def __init__(self,
                 num_convs=4,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 conv_out_channels=256,
                 num_classes=81,
                 class_agnostic=False,
                 upsample_cfg=dict(type='deconv', scale_factor=2),
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=None,
                 loss_mask=dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)):
        super(FCNMaskHead, self).__init__()
        self.upsample_cfg = upsample_cfg.copy()
        if self.upsample_cfg['type'] not in [
                None, 'deconv', 'nearest', 'bilinear', 'carafe'
        ]:
            raise ValueError(
                'Invalid upsample method {}, accepted methods '
                'are "deconv", "nearest", "bilinear", "carafe"'.format(
                    self.upsample_cfg['type']))
        self.num_convs = num_convs
        # WARN: roi_feat_size is reserved and not used
        self.roi_feat_size = _pair(roi_feat_size)
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_out_channels = conv_out_channels
        self.upsample_method = self.upsample_cfg.get('type')
        self.scale_factor = self.upsample_cfg.pop('scale_factor')
        self.num_classes = num_classes
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.fp16_enabled = False
        self.loss_mask = build_loss(loss_mask)

        self.convs = nn.ModuleList()
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg))
        upsample_in_channels = (
            self.conv_out_channels if self.num_convs > 0 else in_channels)
        upsample_cfg_ = self.upsample_cfg.copy()
        if self.upsample_method is None:
            self.upsample = None
        elif self.upsample_method == 'deconv':
            upsample_cfg_.update(
                in_channels=upsample_in_channels,
                out_channels=self.conv_out_channels,
                kernel_size=self.scale_factor,
                stride=self.scale_factor)
        elif self.upsample_method == 'carafe':
            upsample_cfg_.update(
                channels=upsample_in_channels, scale_factor=self.scale_factor)
        else:
            # suppress warnings
            align_corners = (None
                             if self.upsample_method == 'nearest' else False)
            upsample_cfg_.update(
                scale_factor=self.scale_factor,
                mode=self.upsample_method,
                align_corners=align_corners)
        self.upsample = build_upsample_layer(upsample_cfg_)

        out_channels = 1 if self.class_agnostic else self.num_classes
        logits_in_channel = (
            self.conv_out_channels
            if self.upsample_method == 'deconv' else upsample_in_channels)
        self.conv_logits = nn.Conv2d(logits_in_channel, out_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.debug_imgs = None
Esempio n. 12
0
    def __init__(self,
                 grid_points=9,
                 num_convs=8,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 point_feat_channels=64,
                 deconv_kernel_size=4,
                 class_agnostic=False,
                 loss_grid=dict(type='CrossEntropyLoss',
                                use_sigmoid=True,
                                loss_weight=15),
                 conv_cfg=None,
                 norm_cfg=dict(type='GN', num_groups=36)):
        super(GridHead, self).__init__()
        self.grid_points = grid_points
        self.num_convs = num_convs
        self.roi_feat_size = roi_feat_size
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.point_feat_channels = point_feat_channels
        self.conv_out_channels = self.point_feat_channels * self.grid_points
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        if isinstance(norm_cfg, dict) and norm_cfg['type'] == 'GN':
            assert self.conv_out_channels % norm_cfg['num_groups'] == 0

        assert self.grid_points >= 4
        self.grid_size = int(np.sqrt(self.grid_points))
        if self.grid_size * self.grid_size != self.grid_points:
            raise ValueError('grid_points must be a square number')

        # the predicted heatmap is half of whole_map_size
        if not isinstance(self.roi_feat_size, int):
            raise ValueError('Only square RoIs are supporeted in Grid R-CNN')
        self.whole_map_size = self.roi_feat_size * 4

        # compute point-wise sub-regions
        self.sub_regions = self.calc_sub_regions()

        self.convs = []
        for i in range(self.num_convs):
            in_channels = (self.in_channels
                           if i == 0 else self.conv_out_channels)
            stride = 2 if i == 0 else 1
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(in_channels,
                           self.conv_out_channels,
                           self.conv_kernel_size,
                           stride=stride,
                           padding=padding,
                           conv_cfg=self.conv_cfg,
                           norm_cfg=self.norm_cfg,
                           bias=True))
        self.convs = nn.Sequential(*self.convs)

        self.deconv1 = nn.ConvTranspose2d(self.conv_out_channels,
                                          self.conv_out_channels,
                                          kernel_size=deconv_kernel_size,
                                          stride=2,
                                          padding=(deconv_kernel_size - 2) //
                                          2,
                                          groups=grid_points)
        self.norm1 = nn.GroupNorm(grid_points, self.conv_out_channels)
        self.deconv2 = nn.ConvTranspose2d(self.conv_out_channels,
                                          grid_points,
                                          kernel_size=deconv_kernel_size,
                                          stride=2,
                                          padding=(deconv_kernel_size - 2) //
                                          2,
                                          groups=grid_points)

        # find the 4-neighbor of each grid point
        self.neighbor_points = []
        grid_size = self.grid_size
        for i in range(grid_size):  # i-th column
            for j in range(grid_size):  # j-th row
                neighbors = []
                if i > 0:  # left: (i - 1, j)
                    neighbors.append((i - 1) * grid_size + j)
                if j > 0:  # up: (i, j - 1)
                    neighbors.append(i * grid_size + j - 1)
                if j < grid_size - 1:  # down: (i, j + 1)
                    neighbors.append(i * grid_size + j + 1)
                if i < grid_size - 1:  # right: (i + 1, j)
                    neighbors.append((i + 1) * grid_size + j)
                self.neighbor_points.append(tuple(neighbors))
        # total edges in the grid
        self.num_edges = sum([len(p) for p in self.neighbor_points])

        self.forder_trans = nn.ModuleList()  # first-order feature transition
        self.sorder_trans = nn.ModuleList()  # second-order feature transition
        for neighbors in self.neighbor_points:
            fo_trans = nn.ModuleList()
            so_trans = nn.ModuleList()
            for _ in range(len(neighbors)):
                # each transition module consists of a 5x5 depth-wise conv and
                # 1x1 conv.
                fo_trans.append(
                    nn.Sequential(
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels,
                                  5,
                                  stride=1,
                                  padding=2,
                                  groups=self.point_feat_channels),
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels, 1)))
                so_trans.append(
                    nn.Sequential(
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels,
                                  5,
                                  1,
                                  2,
                                  groups=self.point_feat_channels),
                        nn.Conv2d(self.point_feat_channels,
                                  self.point_feat_channels, 1)))
            self.forder_trans.append(fo_trans)
            self.sorder_trans.append(so_trans)

        self.loss_grid = build_loss(loss_grid)
Esempio n. 13
0
 def _init_layers(self):
     self.cls_convs = nn.ModuleList()
     self.reg_convs = nn.ModuleList()
     # box branch
     for i in range(self.stacked_convs):
         chn = self.in_channels if i == 0 else self.feat_channels
         self.reg_convs.append(
             ConvModule(
                 chn,
                 self.feat_channels,
                 3,
                 stride=1,
                 padding=1,
                 conv_cfg=self.conv_cfg,
                 norm_cfg=self.norm_cfg,
                 bias=self.norm_cfg is None))
     self.fovea_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
     # cls branch
     if not self.with_deform:
         for i in range(self.stacked_convs):
             chn = self.in_channels if i == 0 else self.feat_channels
             self.cls_convs.append(
                 ConvModule(
                     chn,
                     self.feat_channels,
                     3,
                     stride=1,
                     padding=1,
                     conv_cfg=self.conv_cfg,
                     norm_cfg=self.norm_cfg,
                     bias=self.norm_cfg is None))
         self.fovea_cls = nn.Conv2d(
             self.feat_channels, self.cls_out_channels, 3, padding=1)
     else:
         self.cls_convs.append(
             ConvModule(
                 self.feat_channels, (self.feat_channels * 4),
                 3,
                 stride=1,
                 padding=1,
                 conv_cfg=self.conv_cfg,
                 norm_cfg=self.norm_cfg,
                 bias=self.norm_cfg is None))
         self.cls_convs.append(
             ConvModule((self.feat_channels * 4), (self.feat_channels * 4),
                        1,
                        stride=1,
                        padding=0,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        bias=self.norm_cfg is None))
         self.feature_adaption = FeatureAlign(
             self.feat_channels,
             self.feat_channels,
             kernel_size=3,
             deformable_groups=self.deformable_groups)
         self.fovea_cls = nn.Conv2d(
             int(self.feat_channels * 4),
             self.cls_out_channels,
             3,
             padding=1)