netG.apply(weights_init) pass else: try: pretrained_model = torch.load('./Generators/' + args.model_id + '.pt') try: netG.load_state_dict(pretrained_model.state_dict()) except: netG.load_state_dict(pretrained_model) except: print('G weight not match, random init') # Print the model print(netG) # Create the encoder netE = Encoder(args).to(device) # Handle multi-gpu if desired if (device.type == 'cuda') and (args.ngpu > 1): netE = nn.DataParallel(netE, list(range(args.ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.2. if args.model_id is 'default': netE.apply(weights_init) pass else: try: pretrained_model = torch.load('./Encoders/' + args.model_id + '.pt') try: netE.load_state_dict(pretrained_model.state_dict())
transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) # Create the dataloader dataloader = torch.utils.data.DataLoader(dataset, batch_size=bs, shuffle=True, num_workers=args.num_workers) # Decide which device we want to run on device = torch.device("cuda:0" if ( torch.cuda.is_available() and args.ngpu > 0) else "cpu") # Create the encoder netE = Encoder(args).to(device) # Handle multi-gpu if desired if (device.type == 'cuda') and (args.ngpu > 1): netE = nn.DataParallel(netE, list(range(args.ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.2. if args.model_id is 'default': netE.apply(weights_init) pass else: try: pretrained_model = torch.load('./Encoders/' + args.model_id + '.pt') try: netE.load_state_dict(pretrained_model.state_dict())