Esempio n. 1
0
    def testNpuzzle ( self, size = 8 ):
        side = int(sqrt(size+1))
        size = side*side-1
        row = lambda n: n[0]
        col = lambda n: n[1]
        
        def repr ( node ):
            puzzle = node.item()
            side = int(sqrt(len(puzzle)))
            lines = [[None]*side]*side
            for i, p in enumerate(puzzle):
                lines[p[0]][p[1]] = str(i)
            return "%s (%d)" % ('\n'.join([''.join(r) for r in lines]), node.cost()) 
                
        def successor ( n ):
            hole = n[0]
            adj = (range(row(hole)-1, row(hole)+2), range(col(hole)-1, col(hole)+2))
            result = []
            for i in range(1, size+1):
                for c in (0, 1):
                    if n[i][c] == hole[c] and n[i][1-c] in adj[1-c]:
                        nxt = list(n)
                        nxt[0], nxt[i] = nxt[i], nxt[0]
                        result.append(tuple(nxt))
            return result
        
        def successorInPlace ( n ):
            hole = n[0]
            adj = (range(row(hole)-1, row(hole)+2), range(col(hole)-1, col(hole)+2))
            for i in range(1, size+1):
                for c in (0, 1):
                    if n[i][c] == hole[c] and n[i][1-c] in adj[1-c]:
                        nl = list(n)
                        nl[0], nl[i] = nl[i], nl[0]
                        yield tuple(nl)

        goal = tuple([(r,c) for r in range(side) for c in range(side)])
        initial = tuple(goal)
        for n in range(6): initial = choice(successor(initial)) # more than 6 implies IDS would take more than 1K recursions
        cost = lambda s,n: 1
            
        #sys.setrecursionlimit(2000)
        
        problem = Problem(initial, goal, successor, cost)        
        solver = ProblemSolver(repr)
        solver.solve(problem, ProblemSolver.iterativeDeepeningGenerator(successor), True)
        self.assertTrue(solver.solved(problem))
        print ("N-puzzle, solution found using IDDF search: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)

        solver = CostBasedProblemSolver(repr)
        #solver.solve(problem, CostBasedProblemSolver.iterativeLengtheningGenerator(successor, cost), True)
        #self.assertTrue(solver.solved(problem))
        #print ("N-puzzle, solution found using iterative lengthening search: " + str(solver.solution))
        #print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)

        manhattanDistance = lambda s: abs(row(s[1])-row(s[0])) + abs(col(s[1])-col(s[0]))
        h = lambda n: reduce(lambda x,y: x+y, map(manhattanDistance, zip(n,goal)))
        solver = CostBasedProblemSolver(repr)
        solver.solve(problem, CostBasedProblemSolver.aStarGenerator(successor, cost, h), True)
        self.assertTrue(solver.solved(problem))
        print ("N-puzzle, solution found using A* search: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)
Esempio n. 2
0
    def testNavigation ( self ):
        distance = {
            ("Oradea","Zerind"): 71,
            ("Oradea","Sibiu"): 151,
            ("Neamt","Iasi"): 87,
            ("Zerind","Arad"): 75,
            ("Iasi","Vaslui"): 92,
            ("Arad","Sibiu"): 140,
            ("Arad","Timisoara"): 118,
            ("Sibiu","Fagaras"): 99,
            ("Sibiu","Rimnicu Vilcea"): 80,
            ("Fagaras","Bucharest"): 1211, #211,
            ("Vaslui","Urziceni"): 142,
            ("Rimnicu Vilcea","Pitesti"): 97,
            ("Rimnicu Vilcea","Craiova"): 146,
            ("Timisoara","Lugoj"): 111,
            ("Lugoj","Mehadia"): 70,
            ("Pitesti","Bucharest"): 101,
            ("Pitesti","Craiova"): 138,
            ("Hirsova","Urziceni"): 98,
            ("Hirsova","Eforie"): 86,
            ("Urcizeni","Bucharest"): 85,
            ("Mehadia","Drobeta"): 75,
            ("Bucharest","Giurgiu"): 90,
            ("Drobeta","Craiova"): 120,
        }
        sld_bucharest = {
            "Arad": 366,
            "Bucharest": 0,
            "Craiova": 160,
            "Drobeta": 242,
            "Eforie": 161,
            "Fagaras": 1300, #176,
            "Giurgiu": 77,
            "Hirsova": 151,
            "Iasi": 226,
            "Lugoj": 244,
            "Mehadia": 241,
            "Neamt": 234,
            "Oradea": 380,
            "Pitesti": 100,
            "Rimnicu Vilcea": 193,
            "Sibiu": 253,
            "Timisoara": 329,
            "Urcizeni": 80,
            "Vaslui": 199,
            "Zerind": 374,
        }
        
        def repr ( node ):
            parent = ''
            if not node.isInitial(): parent = node.parent().item() + ' ->'
            return "%s %s (%d)" % (parent, node.item(), node.cost())
        
        initial = "Arad"
        goal = "Bucharest"
        cost = lambda s, n: distance.get((s,n), distance.get((n,s))) or (s==n and 0)
        successor = lambda n: [p[1-i] for p in distance for i in (0,1) if p[i] == n]
        h = lambda n: sld_bucharest[n]            
        problem = Problem(initial, goal, successor, cost)
        
        solver = ProblemSolver(repr)
        solver.solve(problem, ProblemSolver.iterativeDeepeningGenerator(successor), True)
        self.assertTrue(solver.solved(problem))
        print ("Navigation: solution found using ID search: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)

        solver = ProblemSolver(repr)
        solver.solve(problem, CostBasedProblemSolver.greedyBestFirstGenerator(successor, h), True)
        self.assertTrue(solver.solved(problem))
        print ("Navigation: solution found using greedy-best-first search: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)
    
        solver = CostBasedProblemSolver(repr)
        solver.solve(problem, CostBasedProblemSolver.uniformCostGenerator(successor, cost))
        self.assertTrue(solver.solved(problem))
        print ("Navigation: solution found using uniform-cost search: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)
    
        solver = CostBasedProblemSolver(repr)
        solver.solve(problem, CostBasedProblemSolver.aStarGenerator(successor, cost, h))
        self.assertTrue(solver.solved(problem))
        print ("Navigation: solution found using A*: " + str(solver.solution))
        print("Algorithm performance: ", solver.performance, ", memory used: ", solver.resources)