Esempio n. 1
0
def read_corpus_file(words_df, file, audio_basedir, include_wav, sample_rate):
    """
    Reading one wav file in the corpus.

    Args:
        words_df : A data frame contains all information belong to the specific audio file.
        file (str): The audio file in the Corpus.
        audio_basedir (str) : The path to the corpus.
        include_wav: The data frame contains the wav form as well or not.
        sample_rate (int) : Sample rate.

    Returns:
        pandas.DataFrame with columns wordtoken, start, end, File, Prev, triphones, FBSFs
    """
    try:
        wav_dir = os.path.join(audio_basedir, file)
        print("Reading the file: ", wav_dir)
        wav = read_wav_file(wav_dir, sample_rate)
        word_signals = get_sig_of_words(wav, words_df.start.values, words_df.end.values, sample_rate)
        word_boundaries = get_boundary_of_words(word_signals, np.argmin, 800, 1000)
        word_boundary_parts = split_signal(word_signals, word_boundaries)
        rds_df = words_df.drop(['FBSFs'], axis=1)
        rds_df["FBSFs"] = get_summary_freq_band(word_boundary_parts, sample_rate)
        rds_df["chunk_index"] = word_boundaries
        rds_df["chunk_duration"] = rds_df["chunk_index"].apply(lambda x: x / sample_rate)
        if include_wav:
            rds_df["wav"] = word_signals
        return rds_df
    except Exception as e:
        save_as_exception(audio_basedir, file, e)
Esempio n. 2
0
def read_corpus_files(rds_df, audio_basedir, include_wav, sample_rate):
    """
    Reading all files in the corpus.

    Args:
        rds_df : A data frame contains all words and wav file path
        audio_basedir (str) : dir path to audio files
        include_wav: The data frame contains the wav form as well or not.
        sample_rate (int) : Sample rate.

    Returns:
        pandas.DataFrame with columns wordtoken, start, end, File, Prev, triphones, FBSFs
    """

    files = rds_df.File.unique().tolist()
    df_all_files = []
    for file in files:
        try:
            if Path(os.path.join(audio_basedir, file)).exists():
                df_all_files.append(read_corpus_file(rds_df.loc[rds_df['File'] == file], file, audio_basedir, include_wav, sample_rate))
        except Exception as e:
            save_as_exception(audio_basedir, file, e)
            print(e)
            pass

    return df_all_files
Esempio n. 3
0
def get_mel_spec(sig, sample_rate):
    """
     Compute log Mel-filter bank energy features from an audio signal.

      Args:
         sig (array like) : Signal data. Must be real.
         sample_rate (int) : Sample rate.
     Return:
         Mel spectrum.
     """
    try:
        mel_spec = python_speech_features.logfbank(sig,
                                                   samplerate=sample_rate,
                                                   winlen=0.005,
                                                   winstep=0.005,
                                                   nfilt=21,
                                                   preemph=0.97)
        mel_spec = mel_spec.T
        mini = np.amin(mel_spec)
        maxi = np.amax(mel_spec)
        if mini == maxi:
            return None
        else:
            mel_spec = np.ceil((mel_spec - mini) * (5 / np.abs(mini - maxi)))
            return mel_spec
    except Exception as e:
        save_as_exception("Root", "Mel Spectrum", e)
        return None
Esempio n. 4
0
def rolling_window(function, word_env, window):
    """
    A helper function which applying a defined function on a list.

     Args:
        function : A function which will be apply on enveloped word. For example: np.argmin.
        word_env : An array of enveloped signal for one word.
        window (int) : The sample long window (For example: 1000)

    Returns:
        A list of indices which meets the function.
    """
    le = window // 2
    ri = window - le
    i = le
    pos = []
    try:
        while i + ri <= len(word_env):
            if function(word_env[(i - le):(i + ri)]) == le:
                pos.append(i)
                i += ri
            else:
                i += 1
    except Exception as e:
        save_as_exception("Root", "rolling_window", e)
    return pos
Esempio n. 5
0
def read_pkl_file(path):
    """
    Reading a pkl file using the Pandas package.
    Args:
        path: The path of the file, Example: './data/words.pkl'
    Returns:
        pandas.DataFrame
    """

    try:
        return pd.read_pickle(path)
    except Exception as e:
        print(type(e))
        save_as_exception("root", path, e)
Esempio n. 6
0
def read_nc_file(path):

    """
    Reading a nc file using the xarray package.
    Args:
        path: The path of the file, Example: './data/words.nc'
    Returns:
        xnarray
    """

    try:
        return xr.open_dataarray(path)
    except Exception as e:
        print(type(e))
        save_as_exception("root", path, e)
Esempio n. 7
0
def read_rds_file(path):
    """
    Reading a rds file using the pyreadr package. It contains all words in the the corpus.
    Args:
        path: The path of the file, Example: './data/words.rds'
    Returns:
        pandas.DataFrame with columns wordtoken, start, end, File, Prev, FBSFs, triphones
    """

    try:
        result = pyreadr.read_r(path)
        return result[None]
    except Exception as e:
        print(type(e))
        save_as_exception(path, "words.rds", e)
Esempio n. 8
0
def get_boundary(word_sig, function, smooth, window):
    """
    Find the boundaries based on the defined function.

     Args:
        word_sig : An array of digital signal for each word.
        function : A function which will be apply on enveloped word. For example: np.argmin.
        smooth : Smoothing degree, here is 800.
        window (int) : The sample long window (For example: 1000)

    Returns:
        A list of indices which shows the boundaries.
    """
    try:
        word_env = envelope(word_sig, smooth)
        indices = rolling_window(function, word_env, window)
        return np.array(indices)
    except Exception as e:
        save_as_exception("Root", "get boundary", e)
Esempio n. 9
0
def envelope(sig, smooth):
    """
    Compute the analytic signal, using the Hilbert transform. (Amplitude envelope)
     Args:
        sig : Signal data. Must be real.
        smooth : smoothing degree.
    Returns:
        Analytic signal of x, of each 1-D array along axis.
    """
    try:
        analytic_signal = signal.hilbert(sig)
        amplitude_env = np.absolute(analytic_signal)
        if 0 < smooth < len(amplitude_env):
            smoothing_win = signal.windows.boxcar(smooth) / smooth
            smooth_env = np.convolve(amplitude_env, smoothing_win, mode='same')
            return smooth_env
        else:
            return amplitude_env
    except Exception as e:
        save_as_exception("Root", "Envelope", e)
Esempio n. 10
0
def get_summary_freq_band(words_boundaries_parts, sample_rate):
    """
        A feature summary consists of frequency band number, the first intensity value, the median of
        all values in the frequency band, the minimum and maximum intensity, the last intensity value,
        and chunk index.

      Args:
          words_boundaries_parts : A list of all words which have been split based on a defined function.
          sample_rate (int) : Sample rate.

      Returns:
          A list of all FBSFs for all words in the Corpus.
      """

    fbsf = []
    for word in words_boundaries_parts:
        try:
            band_cues = []
            for index, part in enumerate(word, 1):
                spec = get_mel_spec(part, sample_rate)
                if spec is not None:
                    for ii, band in enumerate(spec, 1):
                        median = np.median(band)
                        new_median = int(median) if '0' in str(
                            median) else median
                        band_cues.append(
                            'b{}start{}median{}min{}max{}end{}part{}'.format(
                                ii, int(band[0]), new_median, int(band.min()),
                                int(band.max()), int(band[-1]), index))

                else:
                    band_cues.append("tooShort")
                    save_as_exception("Root", "get summary frequency bands",
                                      "too short happened")

            fbsf.append('_'.join(band_cues))
        except Exception as e:
            save_as_exception("Root", "get summary frequency bands", e)
            pass

    return fbsf
Esempio n. 11
0
def split_signal(word_signals, word_boundaries):
    """
     Split a digital signal to some parts based on the boundaries

     Args:
         word_signals : signal of words
         word_boundaries : indices of boundaries

     Returns:
         split signals.
     """
    word_tuples = zip(word_signals, word_boundaries)
    parts = []
    try:
        for wav, bound in word_tuples:
            if len(bound) > 0:
                parts.append(np.split(wav, bound))
            else:
                parts.append([wav])
        return parts
    except Exception as e:
        save_as_exception("Root", "Splitting", e)