2 * g * rho_max / (m * R**2)) # Trap frequency corresponding to desired density and radius mu = g * rho_max # Desired chemical potential of the groundstate N_2D = pi * rho_max * R**2 / 2 # Thomas Fermi estimate of atom number for given chemical potential. healing_length = 1 / np.sqrt(8 * pi * a * rho_max) # Total spatial region over all MPI processes: x_min = -5 x_max = 5 # Number of DVR basis functions per element: N = 10 # Finite elements: n_elements = 5 elements = FiniteElements1D(N, n_elements, x_min, x_max) x = elements.points alpha = 30 N_interp = 10000 x_interp = np.linspace(x_min, x_max, N_interp * n_elements) def plot_vector(vector, *args, **kwargs): x_interp, vec_interp = elements.interpolate_vector(vector, N_interp) plt.plot(x_interp, vec_interp, *args, **kwargs) for j in range(n_elements): for i, point in enumerate(elements.points[j, :]): if 0 < i < N - 1:
} # Convert to float colours: colors = { name: [chan / 255 for chan in value] for name, value in colors_rgb.items() } from FEDVR import FiniteElements1D pi = np.pi N = 10 n_elements = 2 x_max = 18 elements = FiniteElements1D(N, n_elements, 0, x_max) FIG_WIDTH = 4.25 FIG_HEIGHT = 2.25 fig = plt.figure(figsize=(FIG_WIDTH, FIG_HEIGHT)) # gs = gridspec.GridSpec(1, 1, left=0.2, bottom=0.1, # right=0.8, top=0.95, wspace=0.2, hspace=0.075) # ax = plt.axes() dx_av = x_max / (n_elements * (N - 1)) for i in range(n_elements): for j in range(N): psi = np.zeros((n_elements, N), dtype=complex) psi[i, j] = 1 # np.sqrt(element.weights[i])