Esempio n. 1
0
    count = count + 1
    print("====================================")
    print("img 번호: ", count)
    img_frame = cv.resize(img_frame, dsize=(0, 0), fx=1, fy=1)
    # if wanted == "June":
    #     matrix=cv.getRotationMatrix2D( (width / 2 , height / 2) , 90 , 1 )
    #     img_frame=cv.warpAffine( img_frame , matrix , (width , height) )
    #     img_frame = cv.flip(img_frame, 0) #상하반전
    gray = cv.cvtColor(img_frame, cv.COLOR_BGR2GRAY)

    dets = detector(gray, 1)
    print("얼굴 갯수:", "{}개".format(len(dets)))
    for face in dets:
        fa = FaceAligner(predictor,
                         desiredLeftEye=(0.3, 0.3),
                         desiredFaceWidth=112)
        faceAligned = fa.align(img_frame, gray, face.rect)
        cut = copy.deepcopy(faceAligned)
        x = face.rect.left()
        y = face.rect.top()
        w = face.rect.right() - x
        h = face.rect.bottom() - y  #bounding box가 작아서 shape 끝점으로 대체
        cv.rectangle(img_frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
        print("x:", x, "y:", y, "w:", w, "h:", h)
        #faceAligned = cv.resize(faceAligned,dsize = (112,112), fx=1,fy=1)
        cv.imwrite('face.jpg', faceAligned)
        faceAligned = Image.open('face.jpg')
        # faceAligned = Image.fromarray(faceAligned)
        faceAligned = transforms(faceAligned).unsqueeze(0)
Esempio n. 2
0
from TinyFacesDetector import TinyFacesDetector
import dlib
from Utils import Utils
from FaceAligner import FaceAligner

faces_out_folder = "./output/"
image_path="sample.jpg"
model_pkl="weights.pkl"

Utils.mkdir_if_not_exist(faces_out_folder)

tiny_faces_detector = TinyFacesDetector(model_pkl,use_gpu=True)

#init the face landmarks detector
predictor_5_face_landmarks = dlib.shape_predictor("shape_predictor_5_face_landmarks.dat")

# tight face aligner : padding = 0.2
aligner_tight = FaceAligner(face_size=112, face_padding=0.2, predictor_5_face_landmarks=predictor_5_face_landmarks)



face_rects=tiny_faces_detector.detect(image_path,nms_thresh=0.1,prob_thresh=0.5,min_conf=0.9)
face_indx=0
for rect in face_rects:
    face_indx+=1
    aligner_tight.out_dir= faces_out_folder
    aligner_tight.align_face(image_path,rect,str(face_indx)+'.jpg')
print("DDDDDDDDDDDD")
image = cv2.imread(args.img_path)
path = '/home/daehyeon/DepthNets/pipeline'
# image = cv2.resize(image, None, fx=1, fy=1, interpolation=cv2.INTER_AREA)
# Create a HOG face detector using the built-in dlib class
# Load the image into an array
start = time.time()
try:
    faces_cnn = face_detector(image, 1)
except:
    pass
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# kdkd 원래는 0.375 였음
for face in faces_cnn:
    fa = FaceAligner(predictor,
                     desiredLeftEye=(0.3, 0.3),
                     desiredFaceWidth=256)
    faceAligned = fa.align(image, gray, face.rect)
    cv2.imwrite(path + '/face_alignmented/{}.png'.format("source"),
                faceAligned)
    # cv2.imshow("Aligned", faceAligned)
    end = time.time()
    cv2.waitKey()
    cv2.destroyAllWindows()
    break

# dir(train_data.root)

# train_data = torchvision.datasets.ImageFolder(root='/home/daehyeon/hdd/deepfake_1st/fake/',)
# count = 0
# path = '/home/daehyeon/DepthNets/pipeline'
Esempio n. 4
0
weight='./mmod_human_face_detector.dat'
face_detector=dlib.cnn_face_detection_model_v1( weight )
ALL=list( range( 0 , 5 ) )
dir = '/home/daehyeon/hdd/deepfake_1st/fake/'
train_data = torchvision.datasets.ImageFolder(root=dir,) # 혹은 os.list_dir(dir)로도 data list 설정가능
count = 0

for i in range(len(train_data.imgs)):
    path = train_data.imgs[i][0]
    image = cv2.imread(path)
    # Create a HOG face detector using the built-in dlib class
    # Load the image into an array

    start=time.time()
    try: faces_cnn=face_detector( image , 1 )
    except: continue
    count += 1
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    for face in faces_cnn :
        fa = FaceAligner(predictor,desiredLeftEye=(0.25, 0.25), desiredFaceWidth=256) # 얼굴 Crop Size에서 눈 사이 간격과 width 비율 = 1: 1-0.25-0.25 = 1:0.5
        faceAligned = fa.align(image,gray,face.rect)
        cv2.imwrite('/home/daehyeon/hdd/processed/fake_256/{}.jpg'.format(count), faceAligned)
        # cv2.imshow("Aligned", faceAligned)
        end=time.time()
        print('{}개 중 {}번째 이미지'.format(len(train_data.imgs),count), '걸린시간:' , format( end - start , '.2f' ) )
        cv2.waitKey()
        cv2.destroyAllWindows()


Esempio n. 5
0
    face_detector = dlib.cnn_face_detection_model_v1(
        "mmod_human_face_detector.dat")
else:
    # faster face detector
    face_detector = dlib.get_frontal_face_detector()

#init the face landmarks detector
predictor_5_face_landmarks = dlib.shape_predictor(
    "shape_predictor_5_face_landmarks.dat")

#init the object tracker
object_tracker = dlib.correlation_tracker()

# tight face aligner : padding = 0.2
aligner_tight = FaceAligner(
    face_size=112,
    face_padding=0.2,
    predictor_5_face_landmarks=predictor_5_face_landmarks)

# loose face aligner : padding = 0.4
aligner_loose = FaceAligner(
    face_size=112,
    face_padding=0.4,
    predictor_5_face_landmarks=predictor_5_face_landmarks)

# init the Face tracker
face_tracker = FaceTracker(face_detector, object_tracker)
aligners = []

for video_path in input_videos:
    video_key = os.path.basename(video_path)
    #set the out folder of the tight aligner