Esempio n. 1
0
def createHumanDetection(image: VLImage, detection: Detection,
                         landmarks17: Optional[CoreLandmarks17]):
    """
    Create human detection structure from core detection result.

    Args:
        image: origin image
        detection: sdk human detection
        landmarks17: estimated landsmarks17

    Returns:
        HumanDetection structure
    """
    human = Human()
    human.img = image.coreImage
    human.detection = detection
    if landmarks17:
        human.landmarks17_opt.set(landmarks17)
    return HumanDetection(human, image)
Esempio n. 2
0
    def detectOne(
        self, image: VLImage, detectArea: Optional[Rect] = None, limit: int = 5, detectLandmarks: bool = True
    ) -> Union[None, HumanDetection]:
        """
        Detect just one best detection on the image.

        Args:
            image: image. Format must be R8G8B8
            detectArea: rectangle area which contains human to detect. If not set will be set image.rect
            limit: max number of detections for input image
            detectLandmarks: detect or not landmarks
        Returns:
            human detection if human is found otherwise None
        Raises:
            LunaSDKException: if detectOne is failed or image format has wrong the format
        """
        assertImageForDetection(image)
        detectionType = self._getDetectionType(detectLandmarks)

        if detectArea is None:
            forDetection = ImageForDetection(image=image, detectArea=image.rect)
        else:
            forDetection = ImageForDetection(image=image, detectArea=detectArea)
        imgs, detectAreas = getArgsForCoreDetectorForImages([forDetection])
        error, detectRes = self._detector.detect(imgs, detectAreas, limit, detectionType)
        assertError(error)

        detections = detectRes.getDetections(0)
        landmarks17Array = detectRes.getLandmarks17(0)

        isReplyNotAssumesDetection = detectRes.getSize() == 1
        if isReplyNotAssumesDetection:
            isDetectionExistsNValid = len(detections) != 0 and detections[0].isValid()
            if not isDetectionExistsNValid:
                return None

        human = Human()
        human.img = image.coreImage
        human.detection = detections[0]
        if landmarks17Array and landmarks17Array[0] is not None:
            human.landmarks17_opt.set(landmarks17Array[0])
        return HumanDetection(human, image)
Esempio n. 3
0
    def detect(
        self, images: List[Union[VLImage, ImageForDetection]], limit: int = 5, detectLandmarks: bool = True
    ) -> List[List[HumanDetection]]:
        """
        Batch detect human bodies on images.

        Args:
            images: input images list. Format must be R8G8B8
            limit: max number of detections per input image
            detectLandmarks: detect or not landmarks
        Returns:
            return list of lists detection, order of detection lists is corresponding to order input images
        """
        coreImages, detectAreas = getArgsForCoreDetectorForImages(images)
        detectionType = self._getDetectionType(detectLandmarks)
        validateBatchDetectInput(self._detector, coreImages, detectAreas)
        error, fsdkDetectRes = self._detector.detect(coreImages, detectAreas, limit, detectionType)
        assertError(error)
        res = []
        for imageIdx in range(fsdkDetectRes.getSize()):
            imagesDetections = []
            detections = fsdkDetectRes.getDetections(imageIdx)
            landmarks17Array = fsdkDetectRes.getLandmarks17(imageIdx)

            for idx, detection in enumerate(detections):
                human = Human()
                human.img = coreImages[imageIdx]
                human.detection = detection
                if detectLandmarks:
                    human.landmarks17_opt.set(landmarks17Array[idx])
                imagesDetections.append(human)

            image = images[imageIdx]
            vlImage = image if isinstance(image, VLImage) else image.image
            res.append([HumanDetection(human, vlImage) for human in imagesDetections])

        return res
Esempio n. 4
0
def _createCoreHumans(image: ImageForRedetection) -> List[Human]:
    """
    Create core humans for redetection
    Args:
        image: image and bounding boxes for redetection

    Returns:
        Human object list. one object for one bbox
    """
    humans = [Human() for _ in range(len(image.bBoxes))]
    for index, human in enumerate(humans):
        human.img = image.image.coreImage
        human.detection.rect = image.bBoxes[index].coreRectF
        human.detection.score = 1
    return humans