Esempio n. 1
0
targetDrummers = ['drummer1', 'drummer2', 'drummer3']
parentFolder = '../../unlabeledDrumDataset/evaluation_enst/STFT/'
saveParentFolder = '../../unlabeledDrumDataset/evaluation_enst/Activations/'
# parentFolder     = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/STFT/'
# saveParentFolder = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/Activations/'
modelpath = './models/dnn_model_1nn_lstm_rc.h5'
'''
==== File IO + testing
'''

model = load_model(modelpath)

for drummer in targetDrummers:
    #==== get STFT
    stftpath = parentFolder + drummer + '/'
    stftFilePathList = getFilePathList(stftpath, 'mat')
    saveFolder = saveParentFolder + drummer + '/'

    for i in range(0, len(stftFilePathList)):
        print 'test on file %f' % i
        filename = stftFilePathList[i][-11:-4]
        savepath = saveFolder + filename
        tmp = loadmat(stftFilePathList[i])
        X = np.ndarray.transpose(tmp['X'])
        X = np.reshape(X, (X.shape[0], 1, X.shape[1]))
        '''
        ==== Testing
        '''
        Y = model.predict(X, batch_size=64)
        all = [Y[:, 0], Y[:, 1], Y[:, 2]]
        np.save(savepath, all)
targetDrummers = ['drummer1', 'drummer2', 'drummer3']
parentFolder = '../../unlabeledDrumDataset/evaluation_enst/CQT/'
saveParentFolder = '../../unlabeledDrumDataset/evaluation_enst/Activations/'
# parentFolder     = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/STFT/'
# saveParentFolder = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/Activations/'
modelpath = './models/dnn_model_cqt_rms.h5'
'''
==== File IO + testing
'''

model = load_model(modelpath)

for drummer in targetDrummers:
    #==== get STFT
    cqtpath = parentFolder + drummer + '/'
    cqtFilePathList = getFilePathList(cqtpath, 'mat')
    saveFolder = saveParentFolder + drummer + '/'

    for i in range(0, len(cqtFilePathList)):
        print 'test on file %f' % i
        filename = cqtFilePathList[i][-11:-4]
        savepath = saveFolder + filename
        tmp = loadmat(cqtFilePathList[i])
        X = np.ndarray.transpose(tmp['Xcqt'])
        '''
        ==== Testing
        '''
        X_diff = np.diff(X, axis=0)
        finalRow = np.zeros((1, np.size(X, 1)))
        X_diff = np.concatenate((X_diff, finalRow), axis=0)
        X_all = np.concatenate((X, X_diff), axis=1)
Esempio n. 3
0
                         histogram_freq=0,
                         write_graph=True,
                         write_images=True)
# earlyStopCallBack = EarlyStopping(monitor='loss', min_delta=1e-6, patience=5)
'''
==== File IO + file concatenation
'''

X = np.ndarray((0, 121))
Y = np.ndarray((0, 3))

for method in targetPseudoLabels:
    for genre in targetGenres:
        #==== get STFT & pseudo label
        cqtpath = parentFolder + 'CQT/' + genre + '/'
        cqtFilePathList = getFilePathList(cqtpath, 'mat')
        pseudoLabelPath = parentFolder + method + '/' + genre + '/'
        pseudoLabelFilePathList = getFilePathList(pseudoLabelPath, 'mat')

        for i in range(0, 200):  #len(stftFilePathList)):
            tmp = loadmat(cqtFilePathList[i])
            X_song = np.ndarray.transpose(tmp['Xcqt'])
            tmp = loadmat(pseudoLabelFilePathList[i])
            Y_song = np.ndarray.transpose(tmp['HD'])
            assert (len(X_song) == len(Y_song)
                    ), 'dimensionality mismatch between CQT and Pseudo-Labels!'
            '''
            ==== Concatenating matrices
            '''
            X = np.concatenate((X, X_song), axis=0)
            Y = np.concatenate((Y, Y_song), axis=0)
Esempio n. 4
0
                'drummer2',
                'drummer3']
parentFolder     = '../../unlabeledDrumDataset/evaluation_enst/200drums/'
parentFolder2     = '../../unlabeledDrumDataset/evaluation_enst/enst/'
parentFolder3     = '../../unlabeledDrumDataset/evaluation_enst/smt/'
saveParentFolder = '../../unlabeledDrumDataset/evaluation_enst/Activations/'
# parentFolder     = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/STFT/'
# saveParentFolder = '/Volumes/CW_MBP15/Datasets/unlabeledDrumDataset/evaluation_enst/Activations/'

'''
==== File IO + testing
'''
for drummer in targetDrummers:
    #==== get STFT
    stftpath = parentFolder + drummer + '/'
    stftFilePathList = getFilePathList(stftpath, 'mat')
    stftpath2 = parentFolder2 + drummer + '/'
    stftFilePathList2 = getFilePathList(stftpath2, 'mat')
    stftpath3 = parentFolder3 + drummer + '/'
    stftFilePathList3 = getFilePathList(stftpath3, 'mat')
    saveFolder = saveParentFolder + drummer + '/'


    for i in range(0, len(stftFilePathList)):
        print 'test on file %f' % i
        filename = stftFilePathList[i][-11:-4]
        savepath = saveFolder + filename
        tmp = loadmat(stftFilePathList[i])
        Y1 = np.ndarray.transpose(tmp['HD'])

        filename2 = stftFilePathList2[i][-11:-4]
Esempio n. 5
0
    model.add(Dropout(0.25))
    model.add(Dense(units = 3))
    model.add(Activation('sigmoid'))
    model.compile(optimizer = 'rmsprop', loss='mse', metrics = ['mae'])
    return model

model = createModel()

'''
==== File IO + training
'''
for method in targetPseudoLabels:
    for genre in targetGenres:
        #==== get STFT & pseudo label
        stftpath = parentFolder + 'STFT/' + genre + '/'
        stftFilePathList = getFilePathList(stftpath, 'mat')
        pseudoLabelPath = parentFolder + method + '/' + genre + '/'
        pseudoLabelFilePathList = getFilePathList(pseudoLabelPath, 'mat')

        for i in range(0, len(stftFilePathList)):
            tmp = loadmat(stftFilePathList[i])
            X = np.ndarray.transpose(tmp['X'])
            tmp = loadmat(pseudoLabelFilePathList[i])
            Y = np.ndarray.transpose(tmp['HD'])
            assert (len(X) == len(Y)), 'dimensionality mismatch between STFT and Pseudo-Labels!'

            '''
            ==== Training
            '''
            [y_hh_scaled, dump, dump] = scaleData(Y[:, 0])
            [y_kd_scaled, dump, dump] = scaleData(Y[:, 1])
hopSize = 512.00
fs = 44100.00
order = round(0.1 / (hopSize / fs))
offset = 0.12
'''
==== File IO + testing
'''
hh_all_results = []
bd_all_results = []
sd_all_results = []

for drummer in targetDrummers:
    #==== get STFT
    activpath = parentFolder + drummer + '/'
    annpath = annotationFolder + drummer + '/'
    activFilePathList = getFilePathList(activpath, 'npy')
    annFilePathList = getFilePathList(annpath, 'mat')

    for i in range(0, len(activFilePathList)):
        print 'evaluate file %f' % i
        filename = activFilePathList[i]
        all = np.load(filename)
        filename_ann = annFilePathList[i]
        ann = loadmat(filename_ann)
        drums_ann = ann['drums']
        onsets_ann = ann['onsets']
        ref_hh, ref_bd, ref_sd = getIndividualOnset(onsets_ann, drums_ann)
        #==== load activation functions
        activ_hh = all[0]
        activ_bd = all[1]
        activ_sd = all[2]