Esempio n. 1
0
    def train_model(self):
        self.log_writer.log(self.file_object, 'Start of Training')
        try:
            data_getter = data_loader.Data_Getter(self.file_object,
                                                  self.log_writer)
            main_data, additional_data = data_getter.get_data()

            preprocessor = data_preprocessing.PreProcessor(
                self.file_object, self.log_writer)
            is_null_present = preprocessor.is_null_present(main_data)
            if is_null_present == True:
                main_data = preprocessor.impute_missing_values(main_data)
            main_data = preprocessor.map_ip_to_country(main_data,
                                                       additional_data)
            main_data = preprocessor.difference_signup_and_purchase(main_data)
            main_data = preprocessor.encoding_browser(main_data)
            main_data = preprocessor.encoding_source(main_data)
            main_data = preprocessor.encoding_sex(main_data)
            main_data = preprocessor.count_frequency_encoding_country(
                main_data)
            main_data = preprocessor.remove_unwanted_cols(main_data)
            x, y = preprocessor.separate_label_feature(main_data, 'class')

            x_train, x_test, y_train, y_test = train_test_split(x,
                                                                y,
                                                                test_size=0.3)

            #x_train,y_train = preprocessor.over_sampling_smote(x_train,y_train)

            model_finder = tuner.Model_Finder(self.file_object,
                                              self.log_writer)
            best_model_name, best_model = model_finder.get_best_model(
                x_train, y_train, x_test, y_test)

            file_op = file_methods.File_Operation(self.file_object,
                                                  self.log_writer)
            save_model = file_op.save_model(best_model, best_model_name)

            self.log_writer.log(self.file_object,
                                'Successfull End of Training')
            self.file_object.close()

        except Exception as e:
            self.log_writer.log(self.file_object,
                                'Unsuccessfull End of Training')
            self.file_object.close()
            raise e
Esempio n. 2
0
    def predictRow(self, datarow):
        self.log_writer.log(self.file_object, 'Start of DataRow Prediction')
        self.datarow = datarow
        try:
            preprocessor = data_preprocessing.PreProcessorRow(
                self.datarow, self.file_object, self.log_writer)
            self.datarow = preprocessor.row_map_ip_to_country(self.datarow)
            self.datarow = preprocessor.row_difference_signup_and_purchase(
                self.datarow)
            self.datarow = preprocessor.row_encoding_browser(self.datarow)
            self.datarow = preprocessor.row_encoding_source(self.datarow)
            self.datarow = preprocessor.row_encoding_sex(self.datarow)
            self.datarow = preprocessor.row_count_frequency_encoding_country(
                self.datarow)
            self.datarow = preprocessor.row_remove_unwanted_cols(self.datarow)

            file_loader = file_methods.File_Operation(self.file_object,
                                                      self.log_writer)
            model_name = file_loader.find_correct_model_file()
            model = file_loader.load_model(model_name)
            self.datarow['purchase_value'] = pd.to_numeric(
                self.datarow['purchase_value'])
            self.datarow['age'] = pd.to_numeric(self.datarow['age'])
            self.datarow = self.datarow.reindex([
                'purchase_value', 'age', 'd_day', 'd_hour', 'd_minutes',
                'd_seconds', 'FireFox', 'IE', 'Opera', 'Safari', 'Direct',
                'SEO', 'M', 'country_encode'
            ],
                                                axis=1)
            result = model.predict(self.datarow)

            self.log_writer.log(self.file_object,
                                'Successfull End of DataRow Prediction')
            self.file_object.close()
        except Exception as e:
            self.log_writer.log(
                self.file_object,
                'Error Occured while doing the DataRaw Prediction !! Error :: %s'
                % str(e))
            self.file_object.close()
            raise e
        return str(result[0])
    def predict_from_model(self):
        self.log_writer.log(self.file_object, 'Start of Prediction')
        try:
            self.pred_data_val.deletePredictionFile()
            data_getter = data_loader_prediction.Data_Getter(
                self.file_object, self.log_writer)
            main_data, additional_data = data_getter.get_data()

            preprocessor = data_preprocessing.PreProcessor(
                self.file_object, self.log_writer)
            is_null_present = preprocessor.is_null_present(main_data)
            if is_null_present == True:
                main_data = preprocessor.impute_missing_values(main_data)
            main_data = preprocessor.map_ip_to_country(main_data,
                                                       additional_data)
            main_data = preprocessor.difference_signup_and_purchase(main_data)
            main_data = preprocessor.encoding_browser(main_data)
            main_data = preprocessor.encoding_source(main_data)
            main_data = preprocessor.encoding_sex(main_data)
            main_data = preprocessor.count_frequency_encoding_country(
                main_data)
            main_data, unwanted_data = preprocessor.remove_unwanted_cols(
                main_data, return_unwanted_data=True)
            #x,y = preprocessor.separate_label_feature(main_data,'class')

            #x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

            #x_train,y_train = preprocessor.over_sampling_smote(x_train,y_train)

            #model_finder = tuner.Model_Finder(self.file_object,self.log_writer)
            #best_model_name,best_model = model_finder.get_best_model(x_train,y_train,x_test,y_test)

            file_loader = file_methods.File_Operation(self.file_object,
                                                      self.log_writer)
            #save_model = file_op.save_model(best_model,best_model_name)
            model_name = file_loader.find_correct_model_file()
            model = file_loader.load_model(model_name)
            result = list(model.predict(main_data))
            data = list(
                zip(unwanted_data['user_id'], unwanted_data['signup_time'],
                    unwanted_data['purchase_time'], unwanted_data['device_id'],
                    unwanted_data['source'], unwanted_data['browser'],
                    unwanted_data['sex'], unwanted_data['ip_address'],
                    unwanted_data['Country'], result))
            result = pd.DataFrame(data,
                                  columns=[
                                      'user_id', 'signup_time',
                                      'purchase_time', 'device_id', 'source',
                                      'browser', 'sex', 'ip_address',
                                      'Country', 'Prediction'
                                  ])
            path = "Prediction_Output_File/Prediction.csv"
            result.to_csv(path, header=True, mode='a+')
            self.log_writer.log(self.file_object,
                                'Successfull End of Prediction')
            self.file_object.close()
        except Exception as e:
            self.log_writer.log(
                self.file_object,
                'Error Occured while doing the Prediction !! Error :: %s' %
                str(e))
            self.file_object.close()
            raise e
        return path, result.head().to_json(orient="records")