def main(config): if config["datasets"] == "VOC": voc = VOC() yolo = YOLO(os.path.abspath(config["cls_list"])) flag, data = voc.parse(config["label"]) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"] , config["img_type"], config["records_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("YOLO Generating Result : {}, msg : {}".format(flag, data)) else: print("VOC Parsing Result : {}, msg : {}".format(flag, data)) elif config["datasets"] == "COCO": coco = COCO() yolo = YOLO(os.path.abspath(config["cls_list"])) flag, data = coco.parse(config["label"]) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"], config["img_type"], config["records_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("YOLO Generating Result : {}, msg : {}".format(flag, data)) else: print("COCO Parsing Result : {}, msg : {}".format(flag, data)) else: print("Unkwon Datasets")
def main(config): if config["datasets"] == "VOC": voc = VOC() yolo = YOLO(os.path.abspath(config["cls_list"])) flag, data = voc.parse(config["label"]) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"], config["img_type"], config["manifest_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("YOLO Generating Result : {}, msg : {}".format( flag, data)) else: print("VOC Parsing Result : {}, msg : {}".format(flag, data)) elif config["datasets"] == "COCO": coco = COCO() keep = { "person", "bicycle", "car", "motorcycle", "bus", "train", "truck" } flag, data, cls_hierarchy = coco.parse(config["label"], config["img_path"], keep=keep) data = sampleDataset(data, config["num_samples"], keep, config["seed"]) yolo = YOLO(os.path.abspath(config["cls_list"]), cls_hierarchy=cls_hierarchy) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"], config["img_type"], config["manifest_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("YOLO Generating Result : {}, msg : {}".format( flag, data)) else: print("COCO Parsing Result : {}, msg : {}".format(flag, data)) elif config["datasets"] == "UDACITY": udacity = UDACITY() yolo = YOLO(os.path.abspath(config["cls_list"])) flag, data = udacity.parse(config["label"]) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"], config["img_type"], config["manifest_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("UDACITY Generating Result : {}, msg : {}".format( flag, data)) else: print("COCO Parsing Result : {}, msg : {}".format(flag, data)) elif config["datasets"] == "KITTI": kitti = KITTI() yolo = YOLO(os.path.abspath(config["cls_list"])) flag, data = kitti.parse(config["label"], config["img_path"], img_type=config["img_type"]) if flag == True: flag, data = yolo.generate(data) if flag == True: flag, data = yolo.save(data, config["output_path"], config["img_path"], config["img_type"], config["manifest_path"]) if flag == False: print("Saving Result : {}, msg : {}".format(flag, data)) else: print("YOLO Generating Result : {}, msg : {}".format( flag, data)) else: print("KITTI Parsing Result : {}, msg : {}".format(flag, data)) else: print("Unkwon Datasets")