Esempio n. 1
0
 def testGeneralConceptInclusion(self):
     # Some Class
     #    ## Primitive Type  ##
     #    SubClassOf: Class: ex:NoExclusion  .
     #    DisjointWith
     #     ( ex:contains some ex:IsolatedCABGConcomitantExclusion )
     contains = Property(EX_NS.contains)
     testClass = ~(contains | some | EX.Exclusion)
     testClass2 = EX.NoExclusion
     testClass2 += testClass
     NormalFormReduction(self.ontGraph)
     individual1 = BNode()
     individual2 = BNode()
     contains.extent = [(individual1, individual2)]
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
     posRules, negRules = CalculateStratifiedModel(
         network, self.ontGraph, [EX_NS.NoExclusion])
     self.failUnless(
         not posRules, "There should be no rules in the 0 strata!")
     self.assertEqual(
         len(negRules), 2, "There should be 2 'negative' rules")
     Individual.factoryGraph = network.inferredFacts
     targetClass = Class(EX_NS.NoExclusion, skipOWLClassMembership=False)
     self.failUnless(
         individual1 in targetClass.extent,
             "There is a BNode that bears the contains " +
             "relation with another individual that is not " +
             "a member of Exclusion!")
     self.assertEquals(
             len(list(targetClass.extent)), 1,
             "There should only be one member in NoExclusion.")
Esempio n. 2
0
 def testGeneralConceptInclusion(self):
     # Some Class
     #     ## Primitive Type  ##
     #     SubClassOf: Class: ex:NoExclusion  .
     #     DisjointWith ( ex:contains some ex:IsolatedCABGConcomitantExclusion )
     contains = Property(EX_NS.contains)
     testClass = ~(contains | some | EX.Exclusion)
     testClass2 = EX.NoExclusion
     testClass2 += testClass
     NormalFormReduction(self.ontGraph)
     individual1 = BNode()
     individual2 = BNode()
     contains.extent = [(individual1, individual2)]
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
     posRules, negRules = CalculateStratifiedModel(network, self.ontGraph,
                                                   [EX_NS.NoExclusion])
     self.failUnless(not posRules,
                     "There should be no rules in the 0 strata.")
     self.assertEqual(len(negRules), 2,
                      "There should be 2 'negative' rules")
     Individual.factoryGraph = network.inferredFacts
     targetClass = Class(EX_NS.NoExclusion, skipOWLClassMembership=False)
     self.failUnless(
         individual1 in targetClass.extent,
         "There is a BNode that bears the contains relation with another individual that is not a member of Exclusion."
     )
     self.assertEquals(len(list(targetClass.extent)), 1,
                       "There should only be one member in NoExclusion")
Esempio n. 3
0
    def testNegatedDisjunctionTest(self):
        contains = Property(EX_NS.contains)
        omega = EX.Omega
        alpha = EX.Alpha
        innerDisjunct = omega | alpha
        foo = EX.foo
        testClass1 = foo & (contains | only | ~innerDisjunct)
        testClass1.identifier = EX_NS.Bar

        self.assertEqual(repr(testClass1),
                'ex:foo THAT ( ex:contains ONLY ( NOT ( ex:Omega OR ex:Alpha ) ) )')
        NormalFormReduction(self.ontGraph)
        self.assertEqual(repr(testClass1),
                'ex:foo THAT ( NOT ( ex:contains SOME ( ex:Omega OR ex:Alpha ) ) )')

        individual1 = BNode()
        individual2 = BNode()
        foo.extent = [individual1]
        contains.extent = [(individual1, individual2)]
        (EX.Baz).extent = [individual2]
        ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
        posRules, ignored = CalculateStratifiedModel(network, self.ontGraph, [EX_NS.Bar])
        self.failUnless(not posRules, "There should be no rules in the 0 strata.")
        self.assertEqual(len(ignored), 2, "There should be 2 'negative' rules")
        testClass1.graph = network.inferredFacts
        self.failUnless(individual1 in testClass1.extent,
                        "%s should be in ex:Bar's extent" % individual1)
Esempio n. 4
0
    def testNegatedDisjunctionTest(self):
        contains = Property(EX_NS.contains)
        omega = EX.Omega
        alpha = EX.Alpha
        innerDisjunct = omega | alpha
        foo = EX.foo
        testClass1 = foo & (contains | only | ~innerDisjunct)
        testClass1.identifier = EX_NS.Bar

        self.assertEqual(
            repr(testClass1),
            'ex:foo THAT ( ex:contains ONLY ( NOT ( ex:Omega OR ex:Alpha ) ) )'
        )
        NormalFormReduction(self.ontGraph)
        self.assertEqual(
            repr(testClass1),
            'ex:foo THAT ( NOT ( ex:contains SOME ( ex:Omega OR ex:Alpha ) ) )'
        )

        individual1 = BNode()
        individual2 = BNode()
        foo.extent = [individual1]
        contains.extent = [(individual1, individual2)]
        (EX.Baz).extent = [individual2]
        ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
        posRules, ignored = CalculateStratifiedModel(network, self.ontGraph,
                                                     [EX_NS.Bar])
        self.failUnless(not posRules,
                        "There should be no rules in the 0 strata.")
        self.assertEqual(len(ignored), 2, "There should be 2 'negative' rules")
        testClass1.graph = network.inferredFacts
        self.failUnless(individual1 in testClass1.extent,
                        "%s should be in ex:Bar's extent" % individual1)
Esempio n. 5
0
def createTestOntGraph():
    graph = Graph()
    graph.bind('ex', EX_NS, True)
    Individual.factoryGraph = graph
    kneeJoint = EX_CL.KneeJoint
    joint = EX_CL.Joint

    knee = EX_CL.Knee
    isPartOf = Property(EX_NS.isPartOf)
    graph.add((isPartOf.identifier, RDF.type, OWL_NS.TransitiveProperty))
    structure = EX_CL.Structure
    leg = EX_CL.Leg
    hasLocation = Property(EX_NS.hasLocation, subPropertyOf=[isPartOf])
    # graph.add((hasLocation.identifier,RDFS.subPropertyOf,isPartOf.identifier))

    kneeJoint.equivalentClass = [joint & (isPartOf | some | knee)]
    legStructure = EX_CL.LegStructure
    legStructure.equivalentClass = [structure & (isPartOf | some | leg)]
    structure += leg
    structure += joint
    locatedInLeg = hasLocation | some | leg
    locatedInLeg += knee

    # log.debug(graph.serialize(format='n3'))

    # newGraph = Graph()
    # newGraph.bind('ex',EX_NS,True)

    # newGraph,conceptMap = StructuralTransformation(graph,newGraph)
    # revDict = dict([(v,k) for k,v in conceptMap.items()])

    # Individual.factoryGraph = newGraph
    # for oldConceptId ,newConceptId in conceptMap.items():
    #     if isinstance(oldConceptId,BNode):
    #         oldConceptRepr = repr(Class(oldConceptId,graph=graph))
    #         if oldConceptRepr.strip() == 'Some Class':
    #             oldConceptRepr = manchesterSyntax(
    #                 oldConceptId,
    #                 graph)
    #         log.debug("%s -> %s" % (
    #             oldConceptRepr,
    #             newConceptId
    #         ))

    #     else:
    #         log.debug("%s -> %s"%(
    #             oldConceptId,
    #             newConceptId
    #         ))

    # for c in AllClasses(newGraph):
    #     if isinstance(c.identifier,BNode) and c.identifier in conceptMap.values():
    # log.debug("## %s ##" % c.identifier)
    #     else:
    # log.debug("##" * 10)
    #     log.debug(c.__repr__(True))
    # log.debug("################################")
    return graph
Esempio n. 6
0
    def test_manchester_owl_restrictions(self):
        # Restrictions can also be created using Manchester OWL syntax in
        # 'colloquial' Python. A Python infix operator recipe was used for
        # this purpose. See below

        assert pformat(
            exNs.hasParent | some | Class(exNs.Physician, graph=self.graph)) == \
            '( ex:hasParent SOME ex:Physician )', pformat(exNs.hasParent | some | Class(exNs.Physician, graph=self.graph))

        assert pformat(
            Property(exNs.hasParent, graph=self.graph) | max | Literal(1)) == \
            '( ex:hasParent MAX 1 )', pformat(Property(exNs.hasParent, graph=self.graph) | max | Literal(1))
Esempio n. 7
0
    def transform(self, graph):
        """
        Transforms a universal restriction on a 'pure' nominal range into a
        conjunction of value restriction (using set theory and demorgan's laws)
        """
        Individual.factoryGraph = graph
        for restriction, intermediateCl, nominal, prop, partition in graph.query(
                self.NOMINAL_QUERY, initNs={
                    u'owl': OWL_NS,
                    u'rdfs': str(RDFS)
                }):
            exceptions = EnumeratedClass()
            partition = Collection(graph, partition)
            nominalCollection = Collection(graph, nominal)
            for i in partition:
                if i not in nominalCollection:
                    exceptions._rdfList.append(i)
                    #exceptions+=i
            exists = Class(complementOf=(Property(prop) | some | exceptions))
            for s, p, o in graph.triples((None, None, restriction)):
                graph.add((s, p, exists.identifier))
            Individual(restriction).delete()

            #purge nominalization placeholder
            iClass = BooleanClass(intermediateCl)
            iClass.clear()
            iClass.delete()
Esempio n. 8
0
    def testNominalPartition(self):
        partition = EnumeratedClass(
            EX_NS.part,
            members=[EX_NS.individual1, EX_NS.individual2, EX_NS.individual3])
        subPartition = EnumeratedClass(members=[EX_NS.individual1])
        partitionProp = Property(EX_NS.propFoo, range=partition.identifier)
        self.testClass = (EX.Bar) & (partitionProp | only | subPartition)
        self.testClass.identifier = EX_NS.Foo
        self.assertEqual(repr(self.testClass),
                         'ex:Bar THAT ( ex:propFoo ONLY { ex:individual1 } )')
        self.assertEqual(repr(self.testClass.identifier),
                         "rdflib.term.URIRef(u'http://example.com/Foo')")
        NormalFormReduction(self.ontGraph)
        self.assertEqual(
            repr(self.testClass),
            "ex:Bar that ( not ( ex:propFoo value ex:individual2 ) ) and ( not ( ex:propFoo value ex:individual3 ) )"
        )
        ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)

        ex = BNode()
        (EX.Bar).extent = [ex]
        self.ontGraph.add((ex, EX_NS.propFoo, EX_NS.individual1))
        CalculateStratifiedModel(network, self.ontGraph, [EX_NS.Foo])
        self.failUnless((ex, RDF.type, EX_NS.Foo) in network.inferredFacts,
                        "Missing level 1 predicate (ex:Foo)")
Esempio n. 9
0
 def testExistentialInRightOfGCI(self):
     someProp = Property(EX_NS.someProp)
     existential = someProp | some | EX.Omega
     existential += EX.Foo
     self.assertEqual(
         repr(Class(EX_NS.Foo)),
         "Class: ex:Foo SubClassOf: ( ex:someProp SOME ex:Omega )")
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
Esempio n. 10
0
 def testUniversalInversion(self):
     testClass1 = EX.omega & (Property(EX_NS.someProp) | only | ~EX.gamma)
     testClass1.identifier = EX_NS.Foo
     self.assertEquals(repr(testClass1),
                       'ex:omega THAT ( ex:someProp ONLY ( NOT ex:gamma ) )')
     NormalFormReduction(self.ontGraph)
     self.assertEquals(repr(testClass1),
                       'ex:omega THAT ( NOT ( ex:someProp SOME ex:gamma ) )')
Esempio n. 11
0
 def testOtherForm(self):
     contains = Property(EX_NS.contains)
     locatedIn = Property(EX_NS.locatedIn)
     topConjunct = (EX.Cath & (contains | some |
                               (EX.MajorStenosis &
                                (locatedIn | value | EX_NS.LAD))) &
                    (contains | some | (EX.MajorStenosis &
                                        (locatedIn | value | EX_NS.RCA))))
     (EX.NumDisV2D) += topConjunct
     from FuXi.DLP.DLNormalization import NormalFormReduction
     NormalFormReduction(self.ontGraph)
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
     rules = network.setupDescriptionLogicProgramming(
         self.ontGraph,
         derivedPreds=[EX_NS.NumDisV2D],
         addPDSemantics=False,
         constructNetwork=False)
     from FuXi.Rete.Magic import PrettyPrintRule
     for rule in rules:
         PrettyPrintRule(rule)
Esempio n. 12
0
 def setUp(self):
     self.ontGraph = Graph()
     self.ontGraph.bind('ex', EX_NS)
     self.ontGraph.bind('owl', OWL_NS)
     Individual.factoryGraph = self.ontGraph
     partition = EnumeratedClass(
         EX_NS.part,
         members=[EX_NS.individual1, EX_NS.individual2, EX_NS.individual3])
     subPartition = EnumeratedClass(EX_NS.partition,
                                    members=[EX_NS.individual1])
     partitionProp = Property(EX_NS.propFoo, range=partition)
     self.foo = EX.foo
     self.foo.subClassOf = [partitionProp | only | subPartition]
Esempio n. 13
0
 def testValueRestrictionInLeftOfGCI(self):
     someProp = Property(EX_NS.someProp)
     leftGCI = (someProp | value | EX.fish) & EX.Bar
     foo = EX.Foo
     foo += leftGCI
     self.assertEqual(
         repr(leftGCI),
         'ex:Bar THAT ( ex:someProp VALUE <http://example.com/fish> )')
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
     rules = network.setupDescriptionLogicProgramming(
         self.ontGraph, addPDSemantics=False, constructNetwork=False)
     self.assertEqual(
         repr(rules), "set([Forall ?X ( ex:Foo(?X) :- " +
         "And( ex:someProp(?X ex:fish) ex:Bar(?X) ) )])")
Esempio n. 14
0
    def testOtherForm2(self):
        hasCoronaryBypassConduit = Property(EX_NS.hasCoronaryBypassConduit)

        ITALeft = EX.ITALeft
        ITALeft += (hasCoronaryBypassConduit | some | EnumeratedClass(members=[
            EX_NS.CoronaryBypassConduit_internal_thoracic_artery_left_insitu,
            EX_NS.CoronaryBypassConduit_internal_thoracic_artery_left_free
        ]))
        from FuXi.DLP.DLNormalization import NormalFormReduction
        self.assertEquals(repr(Class(first(ITALeft.subSumpteeIds()))),
                          "Some Class SubClassOf: Class: ex:ITALeft ")
        NormalFormReduction(self.ontGraph)
        self.assertEquals(
            repr(Class(first(ITALeft.subSumpteeIds()))),
            'Some Class SubClassOf: Class: ex:ITALeft  . EquivalentTo: ( ( ex:hasCoronaryBypassConduit VALUE <http://example.com/CoronaryBypassConduit_internal_thoracic_artery_left_insitu> ) OR ( ex:hasCoronaryBypassConduit VALUE <http://example.com/CoronaryBypassConduit_internal_thoracic_artery_left_free> ) )'
        )
Esempio n. 15
0
 def testInConjunct(self):
     contains = Property(EX_NS.contains)
     testCase2 = EX.Operation & ~ (contains | some | EX.IsolatedCABGConcomitantExclusion) & \
         (contains | some | EX.CoronaryArteryBypassGrafting)
     testCase2.identifier = EX_NS.IsolatedCABGOperation
     NormalFormReduction(self.ontGraph)
     self.assertEqual(repr(testCase2),
                      'ex:Operation THAT ( ex:contains SOME ex:CoronaryArteryBypassGrafting ) AND ( NOT ( ex:contains SOME ex:IsolatedCABGConcomitantExclusion ) )')
     ruleStore, ruleGraph, network = SetupRuleStore(makeNetwork=True)
     op = BNode()
     (EX.Operation).extent = [op]
     grafting = BNode()
     (EX.CoronaryArteryBypassGrafting).extent = [grafting]
     testCase2.graph.add((op, EX_NS.contains, grafting))
     CalculateStratifiedModel(
         network, testCase2.graph, [EX_NS.Foo, EX_NS.IsolatedCABGOperation])
     testCase2.graph = network.inferredFacts
     self.failUnless(op in testCase2.extent,
                     "%s should be in ex:IsolatedCABGOperation's extent" % op)
Esempio n. 16
0
    def transform(self, graph):
        """
        Transforms a 'pure' nominal range into a disjunction of value restrictions
        """
        Individual.factoryGraph = graph
        for restriction, intermediateCl, nominal, prop in graph.query(
                self.NOMINAL_QUERY, initNs={u'owl': OWL_NS}):
            nominalCollection = Collection(graph, nominal)
            #purge restriction
            restr = Class(restriction)
            parentSets = [i for i in restr.subClassOf]
            restr.clearOutDegree()
            newConjunct = BooleanClass(
                restriction, OWL_NS.unionOf,
                [Property(prop) | value | val
                 for val in nominalCollection], graph)
            newConjunct.subClassOf = parentSets

            #purge nominalization placeholder
            iClass = BooleanClass(intermediateCl)
            iClass.clear()
            iClass.delete()
Esempio n. 17
0
def main():
    from optparse import OptionParser
    op = OptionParser(
        'usage: %prog [options] factFile1 factFile2 ... factFileN')

    op.add_option(
        '--why',
        default=None,
        help='Specifies the goals to solve for using the non-naive methods' +
        'see --method')

    op.add_option(
        '--closure',
        action='store_true',
        default=False,
        help='Whether or not to serialize the inferred triples' +
        ' along with the original triples.  Otherwise ' +
        '(the default behavior), serialize only the inferred triples')

    op.add_option(
        '--imports',
        action='store_true',
        default=False,
        help='Whether or not to follow owl:imports in the fact graph')

    op.add_option(
        '--output',
        default='n3',
        metavar='RDF_FORMAT',
        choices=[
            'xml', 'TriX', 'n3', 'pml', 'proof-graph', 'nt', 'rif', 'rif-xml',
            'conflict', 'man-owl'
        ],
        help=
        "Serialize the inferred triples and/or original RDF triples to STDOUT "
        +
        "using the specified RDF syntax ('xml', 'pretty-xml', 'nt', 'turtle', "
        +
        "or 'n3') or to print a summary of the conflict set (from the RETE " +
        "network) if the value of this option is 'conflict'.  If the the " +
        " value is 'rif' or 'rif-xml', Then the rules used for inference " +
        "will be serialized as RIF.  If the value is 'pml' and --why is used, "
        + " then the PML RDF statements are serialized.  If output is " +
        "'proof-graph then a graphviz .dot file of the proof graph is printed. "
        +
        "Finally if the value is 'man-owl', then the RDF facts are assumed " +
        "to be OWL/RDF and serialized via Manchester OWL syntax. The default is %default"
    )

    op.add_option(
        '--class',
        dest='classes',
        action='append',
        default=[],
        metavar='QNAME',
        help='Used with --output=man-owl to determine which ' +
        'classes within the entire OWL/RDF are targetted for serialization' +
        '.  Can be used more than once')

    op.add_option(
        '--hybrid',
        action='store_true',
        default=False,
        help='Used with with --method=bfp to determine whether or not to ' +
        'peek into the fact graph to identify predicates that are both ' +
        'derived and base.  This is expensive for large fact graphs' +
        'and is explicitely not used against SPARQL endpoints')

    op.add_option(
        '--property',
        action='append',
        dest='properties',
        default=[],
        metavar='QNAME',
        help='Used with --output=man-owl or --extract to determine which ' +
        'properties are serialized / extracted.  Can be used more than once')

    op.add_option(
        '--normalize',
        action='store_true',
        default=False,
        help=
        "Used with --output=man-owl to attempt to determine if the ontology is 'normalized' [Rector, A. 2003]"
        + "The default is %default")

    op.add_option(
        '--ddlGraph',
        default=False,
        help=
        "The location of a N3 Data Description document describing the IDB predicates"
    )

    op.add_option(
        '--input-format',
        default='xml',
        dest='inputFormat',
        metavar='RDF_FORMAT',
        choices=['xml', 'trix', 'n3', 'nt', 'rdfa'],
        help=
        "The format of the RDF document(s) which serve as the initial facts " +
        " for the RETE network. One of 'xml', 'n3', 'trix', 'nt', " +
        "or 'rdfa'.  The default is %default")

    op.add_option(
        '--safety',
        default='none',
        metavar='RULE_SAFETY',
        choices=['loose', 'strict', 'none'],
        help="Determines how to handle RIF Core safety.  A value of 'loose' " +
        " means that unsafe rules will be ignored.  A value of 'strict' " +
        " will cause a syntax exception upon any unsafe rule.  A value of " +
        "'none' (the default) does nothing")

    op.add_option(
        '--pDSemantics',
        action='store_true',
        default=False,
        help=
        'Used with --dlp to add pD semantics ruleset for semantics not covered '
        + 'by DLP but can be expressed in definite Datalog Logic Programming' +
        ' The default is %default')

    op.add_option(
        '--stdin',
        action='store_true',
        default=False,
        help=
        'Parse STDIN as an RDF graph to contribute to the initial facts. The default is %default '
    )

    op.add_option(
        '--ns',
        action='append',
        default=[],
        metavar="PREFIX=URI",
        help='Register a namespace binding (QName prefix to a base URI).  This '
        + 'can be used more than once')

    op.add_option(
        '--rules',
        default=[],
        action='append',
        metavar='PATH_OR_URI',
        help='The Notation 3 documents to use as rulesets for the RETE network'
        + '.  Can be specified more than once')

    op.add_option('-d',
                  '--debug',
                  action='store_true',
                  default=True,
                  help='Include debugging output')

    op.add_option(
        '--strictness',
        default='defaultBase',
        metavar='DDL_STRICTNESS',
        choices=['loose', 'defaultBase', 'defaultDerived', 'harsh'],
        help=
        'Used with --why to specify whether to: *not* check if predicates are '
        +
        ' both derived and base (loose), if they are, mark as derived (defaultDerived) '
        +
        'or as base (defaultBase) predicates, else raise an exception (harsh)')

    op.add_option(
        '--method',
        default='naive',
        metavar='reasoning algorithm',
        choices=['gms', 'bfp', 'naive'],
        help='Used with --why to specify how to evaluate answers for query.  '
        + 'One of: gms, sld, bfp, naive')

    op.add_option(
        '--firstAnswer',
        default=False,
        action='store_true',
        help=
        'Used with --why to determine whether to fetch all answers or just ' +
        'the first')

    op.add_option(
        '--edb',
        default=[],
        action='append',
        metavar='EXTENSIONAL_DB_PREDICATE_QNAME',
        help=
        'Used with --why/--strictness=defaultDerived to specify which clashing '
        + 'predicate will be designated as a base predicate')

    op.add_option(
        '--idb',
        default=[],
        action='append',
        metavar='INTENSIONAL_DB_PREDICATE_QNAME',
        help=
        'Used with --why/--strictness=defaultBase to specify which clashing ' +
        'predicate will be designated as a derived predicate')

    op.add_option(
        '--hybridPredicate',
        default=[],
        action='append',
        metavar='PREDICATE_QNAME',
        help=
        'Used with --why to explicitely specify a hybrid predicate (in both ' +
        ' IDB and EDB) ')

    op.add_option(
        '--noMagic',
        default=[],
        action='append',
        metavar='DB_PREDICATE_QNAME',
        help='Used with --why to specify that the predicate shouldnt have its '
        + 'magic sets calculated')

    op.add_option(
        '--filter',
        action='append',
        default=[],
        metavar='PATH_OR_URI',
        help=
        'The Notation 3 documents to use as a filter (entailments do not particpate in network)'
    )

    op.add_option(
        '--ruleFacts',
        action='store_true',
        default=False,
        help="Determines whether or not to attempt to parse initial facts from "
        + "the rule graph.  The default is %default")

    op.add_option(
        '--builtins',
        default=False,
        metavar='PATH_TO_PYTHON_MODULE',
        help="The path to a python module with function definitions (and a " +
        "dicitonary called ADDITIONAL_FILTERS) to use for builtins implementations"
    )

    op.add_option(
        '--dlp',
        action='store_true',
        default=False,
        help=
        'Use Description Logic Programming (DLP) to extract rules from OWL/RDF.  The default is %default'
    )

    op.add_option(
        '--sparqlEndpoint',
        action='store_true',
        default=False,
        help=
        'Indicates that the sole argument is the URI of a SPARQL endpoint to query'
    )

    op.add_option(
        '--ontology',
        action='append',
        default=[],
        metavar='PATH_OR_URI',
        help=
        'The path to an OWL RDF/XML graph to use DLP to extract rules from ' +
        '(other wise, fact graph(s) are used)  ')

    op.add_option(
        '--ontologyFormat',
        default='xml',
        dest='ontologyFormat',
        metavar='RDF_FORMAT',
        choices=['xml', 'trix', 'n3', 'nt', 'rdfa'],
        help=
        "The format of the OWL RDF/XML graph specified via --ontology.  The default is %default"
    )

    op.add_option(
        '--builtinTemplates',
        default=None,
        metavar='N3_DOC_PATH_OR_URI',
        help=
        'The path to an N3 document associating SPARQL FILTER templates to ' +
        'rule builtins')

    op.add_option('--negation',
                  action='store_true',
                  default=False,
                  help='Extract negative rules?')

    op.add_option(
        '--normalForm',
        action='store_true',
        default=False,
        help='Whether or not to reduce DL axioms & LP rules to a normal form')
    (options, facts) = op.parse_args()

    nsBinds = {'iw': 'http://inferenceweb.stanford.edu/2004/07/iw.owl#'}
    for nsBind in options.ns:
        pref, nsUri = nsBind.split('=')
        nsBinds[pref] = nsUri

    namespace_manager = NamespaceManager(Graph())
    if options.sparqlEndpoint:
        factGraph = Graph(plugin.get('SPARQLStore', Store)(facts[0]))
        options.hybrid = False
    else:
        factGraph = Graph()
    ruleSet = Ruleset()

    for fileN in options.rules:
        if options.ruleFacts and not options.sparqlEndpoint:
            factGraph.parse(fileN, format='n3')
            print("Parsing RDF facts from ", fileN)
        if options.builtins:
            import imp
            userFuncs = imp.load_source('builtins', options.builtins)
            rs = HornFromN3(fileN,
                            additionalBuiltins=userFuncs.ADDITIONAL_FILTERS)
        else:
            rs = HornFromN3(fileN)
        nsBinds.update(rs.nsMapping)
        ruleSet.formulae.extend(rs)
        #ruleGraph.parse(fileN, format='n3')

    ruleSet.nsMapping = nsBinds

    for prefix, uri in list(nsBinds.items()):
        namespace_manager.bind(prefix, uri, override=False)
    closureDeltaGraph = Graph()
    closureDeltaGraph.namespace_manager = namespace_manager
    factGraph.namespace_manager = namespace_manager

    if not options.sparqlEndpoint:
        for fileN in facts:
            factGraph.parse(fileN, format=options.inputFormat)
            if options.imports:
                for owlImport in factGraph.objects(predicate=OWL_NS.imports):
                    factGraph.parse(owlImport)
                    print("Parsed Semantic Web Graph.. ", owlImport)

    if not options.sparqlEndpoint and facts:
        for pref, uri in factGraph.namespaces():
            nsBinds[pref] = uri

    if options.stdin:
        assert not options.sparqlEndpoint, "Cannot use --stdin with --sparqlEndpoint"
        factGraph.parse(sys.stdin, format=options.inputFormat)

    #Normalize namespace mappings
    #prune redundant, rdflib-allocated namespace prefix mappings
    newNsMgr = NamespaceManager(factGraph)
    from FuXi.Rete.Util import CollapseDictionary
    for k, v in list(
            CollapseDictionary(
                dict([(k, v) for k, v in factGraph.namespaces()])).items()):
        newNsMgr.bind(k, v)
    factGraph.namespace_manager = newNsMgr

    if options.normalForm:
        NormalFormReduction(factGraph)

    if not options.sparqlEndpoint:
        workingMemory = generateTokenSet(factGraph)
    if options.builtins:
        import imp
        userFuncs = imp.load_source('builtins', options.builtins)
        rule_store, rule_graph, network = SetupRuleStore(
            makeNetwork=True, additionalBuiltins=userFuncs.ADDITIONAL_FILTERS)
    else:
        rule_store, rule_graph, network = SetupRuleStore(makeNetwork=True)
    network.inferredFacts = closureDeltaGraph
    network.nsMap = nsBinds

    if options.dlp:
        from FuXi.DLP.DLNormalization import NormalFormReduction
        if options.ontology:
            ontGraph = Graph()
            for fileN in options.ontology:
                ontGraph.parse(fileN, format=options.ontologyFormat)
                for prefix, uri in ontGraph.namespaces():
                    nsBinds[prefix] = uri
                    namespace_manager.bind(prefix, uri, override=False)
                    if options.sparqlEndpoint:
                        factGraph.store.bind(prefix, uri)
        else:
            ontGraph = factGraph
        NormalFormReduction(ontGraph)
        dlp = network.setupDescriptionLogicProgramming(
            ontGraph,
            addPDSemantics=options.pDSemantics,
            constructNetwork=False,
            ignoreNegativeStratus=options.negation,
            safety=safetyNameMap[options.safety])
        ruleSet.formulae.extend(dlp)
    if options.output == 'rif' and not options.why:
        for rule in ruleSet:
            print(rule)
        if options.negation:
            for nRule in network.negRules:
                print(nRule)

    elif options.output == 'man-owl':
        cGraph = network.closureGraph(factGraph, readOnly=False)
        cGraph.namespace_manager = namespace_manager
        Individual.factoryGraph = cGraph
        if options.classes:
            mapping = dict(namespace_manager.namespaces())
            for c in options.classes:
                pref, uri = c.split(':')
                print(Class(URIRef(mapping[pref] + uri)).__repr__(True))
        elif options.properties:
            mapping = dict(namespace_manager.namespaces())
            for p in options.properties:
                pref, uri = p.split(':')
                print(Property(URIRef(mapping[pref] + uri)))
        else:
            for p in AllProperties(cGraph):
                print(p.identifier, first(p.label))
                print(repr(p))
            for c in AllClasses(cGraph):
                if options.normalize:
                    if c.isPrimitive():
                        primAnc = [
                            sc for sc in c.subClassOf if sc.isPrimitive()
                        ]
                        if len(primAnc) > 1:
                            warnings.warn(
                                "Branches of primitive skeleton taxonomy" +
                                " should form trees: %s has %s primitive parents: %s"
                                % (c.qname, len(primAnc), primAnc),
                                UserWarning, 1)
                        children = [desc for desc in c.subSumpteeIds()]
                        for child in children:
                            for otherChild in [
                                    o for o in children if o is not child
                            ]:
                                if not otherChild in [
                                        c.identifier
                                        for c in Class(child).disjointWith
                                ]:  # and \
                                    warnings.warn(
                                        "Primitive children (of %s) " % (c.qname) + \
                                        "must be mutually disjoint: %s and %s" % (
                                    Class(child).qname, Class(otherChild).qname), UserWarning, 1)
                # if not isinstance(c.identifier, BNode):
                print(c.__repr__(True))

    if not options.why:
        # Naive construction of graph
        for rule in ruleSet:
            network.buildNetworkFromClause(rule)

    magicSeeds = []
    if options.why:
        builtinTemplateGraph = Graph()
        if options.builtinTemplates:
            builtinTemplateGraph = Graph().parse(options.builtinTemplates,
                                                 format='n3')
        factGraph.templateMap = \
            dict([(pred, template)
                      for pred, _ignore, template in
                            builtinTemplateGraph.triples(
                                (None,
                                 TEMPLATES.filterTemplate,
                                 None))])
        goals = []
        query = ParseSPARQL(options.why)
        network.nsMap['pml'] = PML
        network.nsMap['gmp'] = GMP_NS
        network.nsMap['owl'] = OWL_NS
        nsBinds.update(network.nsMap)
        network.nsMap = nsBinds
        if not query.prologue:
            query.prologue = Prologue(None, [])
            query.prologue.prefixBindings.update(nsBinds)
        else:
            for prefix, nsInst in list(nsBinds.items()):
                if prefix not in query.prologue.prefixBindings:
                    query.prologue.prefixBindings[prefix] = nsInst
        print("query.prologue", query.prologue)
        print("query.query", query.query)
        print("query.query.whereClause", query.query.whereClause)
        print("query.query.whereClause.parsedGraphPattern",
              query.query.whereClause.parsedGraphPattern)
        goals.extend([(s, p, o) for s, p, o, c in ReduceGraphPattern(
            query.query.whereClause.parsedGraphPattern,
            query.prologue).patterns])
        # dPreds=[]# p for s, p, o in goals ]
        # print("goals", goals)
        magicRuleNo = 0
        bottomUpDerivedPreds = []
        # topDownDerivedPreds  = []
        defaultBasePreds = []
        defaultDerivedPreds = set()
        hybridPredicates = []
        mapping = dict(newNsMgr.namespaces())
        for edb in options.edb:
            pref, uri = edb.split(':')
            defaultBasePreds.append(URIRef(mapping[pref] + uri))
        noMagic = []
        for pred in options.noMagic:
            pref, uri = pred.split(':')
            noMagic.append(URIRef(mapping[pref] + uri))
        if options.ddlGraph:
            ddlGraph = Graph().parse(options.ddlGraph, format='n3')
            # @TODO: should also get hybrid predicates from DDL graph
            defaultDerivedPreds = IdentifyDerivedPredicates(
                ddlGraph, Graph(), ruleSet)
        else:
            for idb in options.idb:
                pref, uri = idb.split(':')
                defaultDerivedPreds.add(URIRef(mapping[pref] + uri))
            defaultDerivedPreds.update(
                set([p == RDF.type and o or p for s, p, o in goals]))
            for hybrid in options.hybridPredicate:
                pref, uri = hybrid.split(':')
                hybridPredicates.append(URIRef(mapping[pref] + uri))

        if options.method == 'gms':
            for goal in goals:
                goalSeed = AdornLiteral(goal).makeMagicPred()
                print("Magic seed fact (used in bottom-up evaluation)",
                      goalSeed)
                magicSeeds.append(goalSeed.toRDFTuple())
            if noMagic:
                print("Predicates whose magic sets will not be calculated")
                for p in noMagic:
                    print("\t", factGraph.qname(p))
            for rule in MagicSetTransformation(
                    factGraph,
                    ruleSet,
                    goals,
                    derivedPreds=bottomUpDerivedPreds,
                    strictCheck=nameMap[options.strictness],
                    defaultPredicates=(defaultBasePreds, defaultDerivedPreds),
                    noMagic=noMagic):
                magicRuleNo += 1
                network.buildNetworkFromClause(rule)
            if len(list(ruleSet)):
                print("reduction in size of program: %s (%s -> %s clauses)" %
                      (100 -
                       (float(magicRuleNo) / float(len(list(ruleSet)))) * 100,
                       len(list(ruleSet)), magicRuleNo))
            start = time.time()
            network.feedFactsToAdd(generateTokenSet(magicSeeds))
            if not [
                    rule for rule in factGraph.adornedProgram if len(rule.sip)
            ]:
                warnings.warn(
                    "Using GMS sideways information strategy with no " +
                    "information to pass from query.  Falling back to " +
                    "naive method over given facts and rules")
                network.feedFactsToAdd(workingMemory)
            sTime = time.time() - start
            if sTime > 1:
                sTimeStr = "%s seconds" % sTime
            else:
                sTime = sTime * 1000
                sTimeStr = "%s milli seconds" % sTime
            print("Time to calculate closure on working memory: ", sTimeStr)

            if options.output == 'rif':
                print("Rules used for bottom-up evaluation")
                if network.rules:
                    for clause in network.rules:
                        print(clause)
                else:
                    for clause in factGraph.adornedProgram:
                        print(clause)
            if options.output == 'conflict':
                network.reportConflictSet()

        elif options.method == 'bfp':
            topDownDPreds = defaultDerivedPreds
            if options.builtinTemplates:
                builtinTemplateGraph = Graph().parse(options.builtinTemplates,
                                                     format='n3')
                builtinDict = dict([
                    (pred, template) for pred, _ignore, template in
                    builtinTemplateGraph.triples((None,
                                                  TEMPLATES.filterTemplate,
                                                  None))
                ])
            else:
                builtinDict = None
            topDownStore = TopDownSPARQLEntailingStore(
                factGraph.store,
                factGraph,
                idb=ruleSet,
                DEBUG=options.debug,
                derivedPredicates=topDownDPreds,
                templateMap=builtinDict,
                nsBindings=network.nsMap,
                identifyHybridPredicates=options.hybrid
                if options.method == 'bfp' else False,
                hybridPredicates=hybridPredicates)
            targetGraph = Graph(topDownStore)
            for pref, nsUri in list(network.nsMap.items()):
                targetGraph.bind(pref, nsUri)
            start = time.time()
            # queryLiteral = EDBQuery([BuildUnitermFromTuple(goal) for goal in goals],
            #                         targetGraph)
            # query = queryLiteral.asSPARQL()
            # print("Goal to solve ", query)
            sTime = time.time() - start
            result = targetGraph.query(options.why, initNs=network.nsMap)
            if result.askAnswer:
                sTime = time.time() - start
                if sTime > 1:
                    sTimeStr = "%s seconds" % sTime
                else:
                    sTime = sTime * 1000
                    sTimeStr = "%s milli seconds" % sTime
                print("Time to reach answer ground goal answer of %s: %s" %
                      (result.askAnswer[0], sTimeStr))
            else:
                for rt in result:
                    sTime = time.time() - start
                    if sTime > 1:
                        sTimeStr = "%s seconds" % sTime
                    else:
                        sTime = sTime * 1000
                        sTimeStr = "%s milli seconds" % sTime
                    if options.firstAnswer:
                        break
                    print(
                        "Time to reach answer %s via top-down SPARQL sip strategy: %s"
                        % (rt, sTimeStr))
            if options.output == 'conflict' and options.method == 'bfp':
                for _network, _goal in topDownStore.queryNetworks:
                    print(network, _goal)
                    _network.reportConflictSet(options.debug)
                for query in topDownStore.edbQueries:
                    print(query.asSPARQL())

    elif options.method == 'naive':
        start = time.time()
        network.feedFactsToAdd(workingMemory)
        sTime = time.time() - start
        if sTime > 1:
            sTimeStr = "%s seconds" % sTime
        else:
            sTime = sTime * 1000
            sTimeStr = "%s milli seconds" % sTime
        print("Time to calculate closure on working memory: ", sTimeStr)
        print(network)
        if options.output == 'conflict':
            network.reportConflictSet()

    for fileN in options.filter:
        for rule in HornFromN3(fileN):
            network.buildFilterNetworkFromClause(rule)

    if options.negation and network.negRules and options.method in [
            'both', 'bottomUp'
    ]:
        now = time.time()
        rt = network.calculateStratifiedModel(factGraph)
        print(
            "Time to calculate stratified, stable model (inferred %s facts): %s"
            % (rt, time.time() - now))
    if options.filter:
        print("Applying filter to entailed facts")
        network.inferredFacts = network.filteredFacts

    if options.closure and options.output in RDF_SERIALIZATION_FORMATS:
        cGraph = network.closureGraph(factGraph)
        cGraph.namespace_manager = namespace_manager
        print(
            cGraph.serialize(destination=None,
                             format=options.output,
                             base=None))
    elif options.output and options.output in RDF_SERIALIZATION_FORMATS:
        print(
            network.inferredFacts.serialize(destination=None,
                                            format=options.output,
                                            base=None))
Esempio n. 18
0
assert pformat(woman) == '( ex:Female AND ex:Human )'

# Enumerated classes can also be manipulated

contList = [Class(exNs.Africa, graph=g), Class(exNs.NorthAmerica, graph=g)]

assert pformat(
    EnumeratedClass(members=contList, graph=g)) == \
    '{ ex:Africa ex:NorthAmerica }'

# owl:Restrictions can also be instanciated:

assert pformat(Restriction(
    exNs.hasParent, graph=g, allValuesFrom=exNs.Human)) == \
    '( ex:hasParent ONLY ex:Human )'

# Restrictions can also be created using Manchester OWL syntax in
# 'colloquial' Python. A Python infix operator recipe was used for
# this purpose. See below

assert pformat(
    exNs.hasParent | some | Class(exNs.Physician, graph=g)) == \
    '( ex:hasParent SOME ex:Physician )'

assert pformat(
    Property(exNs.hasParent, graph=g) | max | Literal(1)) == \
    '( ex:hasParent MAX 1 )'

print("Completed")
Esempio n. 19
0
def ProcessConcept(klass, owlGraph, FreshConcept, newOwlGraph):
    """
    This method implements the pre-processing portion of the completion-based procedure
    and recursively transforms the input ontology one concept at a time
    """
    iD = klass.identifier
    # maps the identifier to skolem:bnodeLabel if
    # the identifier is a BNode or to skolem:newBNodeLabel
    # if its a URI
    FreshConcept[iD] = SkolemizeExistentialClasses(
        BNode() if isinstance(iD, URIRef) else iD
    )
    # A fresh atomic concept (A_c)
    newCls = Class(FreshConcept[iD], graph=newOwlGraph)

    cls = CastClass(klass, owlGraph)

    # determine if the concept is the left, right (or both)
    # operand of a subsumption axiom in the ontology
    location = WhichSubsumptionOperand(iD, owlGraph)
    # log.debug(repr(cls))
    if isinstance(iD, URIRef):
        # An atomic concept?
        if location in [LEFT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
            log.debug(
                "Original (atomic) concept appears in the left HS of a subsumption axiom")
            # If class is left operand of subsumption operator,
            # assert (in new OWL graph) that A_c subsumes the concept
            _cls = Class(cls.identifier, graph=newOwlGraph)
            newCls += _cls
            log.debug("%s subsumes %s" % (newCls, _cls))
        if location in [RIGHT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
            log.debug(
                "Original (atomic) concept appears in the right HS of a subsumption axiom")
            # If class is right operand of subsumption operator,
            # assert that it subsumes A_c
            _cls = Class(cls.identifier, graph=newOwlGraph)
            _cls += newCls
            log.debug("%s subsumes %s" % (_cls, newCls))
    elif isinstance(cls, Restriction):
        if location != NEITHER_SUBSUMPTION_OPERAND:
            # appears in at least one subsumption operator

            # An existential role restriction
            log.debug(
                "Original (role restriction) appears in a subsumption axiom")
            role = Property(cls.onProperty, graph=newOwlGraph)

            fillerCls = ProcessConcept(
                Class(cls.restrictionRange),
                owlGraph,
                FreshConcept,
                newOwlGraph)
            # leftCls is (role SOME fillerCls)
            leftCls = role | some | fillerCls
            log.debug("let leftCls be %s" % leftCls)
            if location in [LEFT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
                # if appears as the left operand, we say A_c subsumes
                # leftCls
                newCls += leftCls
                log.debug("%s subsumes leftCls" % newCls)
            if location in [RIGHT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
                # if appears as right operand, we say left Cls subsumes A_c
                leftCls += newCls
                log.debug("leftCls subsumes %s" % newCls)
    else:
        assert isinstance(cls, BooleanClass), "Not ELH ontology: %r" % cls
        assert cls._operator == OWL_NS.intersectionOf, "Not ELH ontology"
        log.debug(
            "Original conjunction (or boolean operator wlog ) appears in a subsumption axiom")
        # A boolean conjunction
        if location != NEITHER_SUBSUMPTION_OPERAND:
            members = [ProcessConcept(Class(c),
                                      owlGraph,
                                      FreshConcept,
                                      newOwlGraph) for c in cls]
            newBoolean = BooleanClass(
                BNode(), members=members, graph=newOwlGraph)
            # create a boolean conjunction of the fresh concepts corresponding
            # to processing each member of the existing conjunction
            if location in [LEFT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
                # if appears as the left operand, we say the new conjunction
                # is subsumed by A_c
                newCls += newBoolean
                log.debug("%s subsumes %s" % (newCls, newBoolean))
            if location in [RIGHT_SUBSUMPTION_OPERAND, BOTH_SUBSUMPTION_OPERAND]:
                # if appears as the right operand, we say A_c is subsumed by
                # the new conjunction
                newBoolean += newCls
                log.debug("%s subsumes %s" % (newBoolean, newCls))
    return newCls