Esempio n. 1
0
def evolve_callback(ga_engine):
    global n
    best = ga_engine.bestIndividual()
    i, nearest_supers = eval_func(best, graph=True)
    title = 'Best Chromosome (Gen. %03d)' % n
    GAgraph.generate_graph(list(best.getBinary()), nearest_supers, FIELD_WIDTH, FIELD_HEIGHT, title,n)
    n += 1
Esempio n. 2
0
def evolve_callback(ga_engine):
    global n
    best = ga_engine.bestIndividual()
    i, nearest_supers = eval_func(best, graph=True)
    title = 'Best Chromosome (Gen. %03d)' % n
    GAgraph.generate_graph(list(best.getBinary()), nearest_supers, FIELD_WIDTH,
                           FIELD_HEIGHT, title, n)
    n += 1
Esempio n. 3
0
def run_main():
    # Define chromosome
    genome = G1DBinaryString.G1DBinaryString(NUM_NODES)

    genome.evaluator.set(eval_func)
    genome.mutator.set(Mutators.G1DBinaryStringMutatorFlip)
    genome.crossover.set(Crossovers.G1DBinaryStringXSinglePoint)

    # Initialize Genetic algorithm
    ga = GSimpleGA.GSimpleGA(genome)

    # Utilize all processors if more than one are available
    ga.setMultiProcessing(True)

    # Set population size
    ga.setPopulationSize(POP_SIZE)

    # Set generation at which evolution pauses and interactive mode starts
    #ga.setInteractiveGeneration(500)

    # Selection
    ga.selector.set(Selectors.GTournamentSelector)
    #ga.selector.set(Selectors.GRankSelector)
    #ga.selector.set(Selectors.GUniformSelector)
    #ga.selector.set(Selectors.GRouletteWheel)

    # Set Probabilities for Genetic Algorithm
    ga.setCrossoverRate(Pc)
    ga.setMutationRate(Pm)

    ga.setElitism(True)
    ga.setElitismReplacement(NUM_NODES / 4)

    ga.setGenerations(NUM_GENERATIONS)

    # Set up database for data storage and graphing with pyevolve_graph.py
    #sqlite_adapter = DBAdapters.DBSQLite(identify="ex10", resetDB=True)
    #adapter = DBAdapters.DBVPythonGraph(identify="run_01", frequency = 1)
    #ga.setDBAdapter(adapter)

    # Run genetic Algorithm
    ga.evolve(freq_stats=NUM_GENERATIONS / 4)

    # Show best chromosome
    best = ga.bestIndividual()
    print
    print "Best Chromosome:", '\n', best.getBinary()
    print "Fitness Raw Score:", best.getRawScore()
    print

    # Graph best chromosome
    i, nearest_supers = eval_func(best, graph=True)
    title = r'$%d \ Nodes$' % NUM_NODES
def run_main():
    # Define chromosome
    genome = G1DBinaryString.G1DBinaryString(NUM_NODES)

    genome.evaluator.set(eval_func)
    genome.mutator.set(Mutators.G1DBinaryStringMutatorFlip)
    genome.crossover.set(Crossovers.G1DBinaryStringXSinglePoint)

    # Initialize Genetic algorithm
    ga = GSimpleGA.GSimpleGA(genome)

    # Utilize all processors if more than one are available 
    ga.setMultiProcessing(True)

    # Set population size
    ga.setPopulationSize(POP_SIZE)

    # Set generation at which evolution pauses and interactive mode starts
    #ga.setInteractiveGeneration(500)

    # Selection
    ga.selector.set(Selectors.GTournamentSelector)
    #ga.selector.set(Selectors.GRankSelector)
    #ga.selector.set(Selectors.GUniformSelector)
    #ga.selector.set(Selectors.GRouletteWheel)

    # Set Probabilities for Genetic Algorithm
    ga.setCrossoverRate(Pc)
    ga.setMutationRate(Pm)

    ga.setElitism(True)
    ga.setElitismReplacement(NUM_NODES/4)

    ga.setGenerations(NUM_GENERATIONS)

    # Set up database for data storage and graphing with pyevolve_graph.py
    #sqlite_adapter = DBAdapters.DBSQLite(identify="ex10", resetDB=True)
    #adapter = DBAdapters.DBVPythonGraph(identify="run_01", frequency = 1)
    #ga.setDBAdapter(adapter)

    # Run genetic Algorithm
    ga.evolve(freq_stats=NUM_GENERATIONS/4)

    # Show best chromosome
    best = ga.bestIndividual()
    print 
    print "Best Chromosome:", '\n', best.getBinary()
    print "Fitness Raw Score:", best.getRawScore()
    print

    # Graph best chromosome
    i, nearest_supers = eval_func(best, graph=True)
    title = r'$%d \ Nodes$' % NUM_NODES
Esempio n. 5
0
    # Set Probabilities for Genetic Algorithm
    ga.setCrossoverRate(Pc)
    ga.setMutationRate(Pm)

    ga.setElitism(True)
    ga.setElitismReplacement(NUM_NODES/4)

    ga.setGenerations(NUM_GENERATIONS)

    # Set up database for data storage and graphing with pyevolve_graph.py
    #sqlite_adapter = DBAdapters.DBSQLite(identify="ex10", resetDB=True)
    #adapter = DBAdapters.DBVPythonGraph(identify="run_01", frequency = 1)
    #ga.setDBAdapter(adapter)

    # Run genetic Algorithm
    ga.evolve(freq_stats=NUM_GENERATIONS/4)

    # Show best chromosome
    best = ga.bestIndividual()
    print 
    print "Best Chromosome:", '\n', best.getBinary()
    print "Fitness Raw Score:", best.getRawScore()
    print

    # Graph best chromosome
    i, nearest_supers = eval_func(best, graph=True)
    title = 'Node Placement'# % NUM_NODES
    GAgraph.generate_graph(list(best.getBinary()), nearest_supers, FIELD_WIDTH, FIELD_HEIGHT, title)

Esempio n. 6
0
    # Set Probabilities for Genetic Algorithm
    ga.setCrossoverRate(Pc)
    ga.setMutationRate(Pm)

    ga.setElitism(True)
    ga.setElitismReplacement(NUM_NODES / 4)

    ga.setGenerations(NUM_GENERATIONS)

    # Set up database for data storage and graphing with pyevolve_graph.py
    #sqlite_adapter = DBAdapters.DBSQLite(identify="ex10", resetDB=True)
    #adapter = DBAdapters.DBVPythonGraph(identify="run_01", frequency = 1)
    #ga.setDBAdapter(adapter)

    # Run genetic Algorithm
    ga.evolve(freq_stats=NUM_GENERATIONS / 4)

    # Show best chromosome
    best = ga.bestIndividual()
    print
    print "Best Chromosome:", '\n', best.getBinary()
    print "Fitness Raw Score:", best.getRawScore()
    print

    # Graph best chromosome
    i, nearest_supers = eval_func(best, graph=True)
    title = 'Node Placement'  # % NUM_NODES
    GAgraph.generate_graph(list(best.getBinary()), nearest_supers, FIELD_WIDTH,
                           FIELD_HEIGHT, title)