Esempio n. 1
0
 def test_naive2(self):
     smape_naive2 = SMAPE(self.test_data, self.naive2_predictions)
     mase_naive2 = MASE(self.test_data, self.naive2_predictions, scale)
     owa_naive2 = round(OWA(mase_naive2, smape_naive2), 3)
     self.assertEqual(round(smape_naive2, 3), 13.564, "Should be 13.564")
     self.assertEqual(round(mase_naive2, 3), 1.912, "Should be 1.912")
     self.assertEqual(owa_naive2, 1.000, "Should be 1.000")
Esempio n. 2
0
 def test_naive(self):
     smape_naive = SMAPE(self.test_data, self.naive_predictions)
     mase_naive = MASE(self.test_data, self.naive_predictions, scale)
     owa_naive = round(OWA(mase_naive, smape_naive), 3)
     self.assertEqual(round(smape_naive, 3), 14.208, "Should be 14.208")
     self.assertEqual(round(mase_naive, 3), 2.044, "Should be 2.044")
     self.assertEqual(owa_naive, 1.058, "Should be 1.058")
Esempio n. 3
0
    def test_montero(self):
        smape_montero = SMAPE(self.test_data, self.montero_predictions)
        mase_montero = MASE(self.test_data, self.montero_predictions, scale)
        owa_montero = round(OWA(mase_montero, smape_montero), 3)

        self.assertEqual(round(smape_montero, 3), 11.720, "Should be 11.720")
        self.assertEqual(round(mase_montero, 3), 1.551, "Should be 1.551")
        self.assertEqual(owa_montero, 0.838, "Should be 0.838")
Esempio n. 4
0
    def test_smyl(self):
        smape_smyl = SMAPE(self.test_data, self.smyl_predictions)
        mase_smyl = MASE(self.test_data, self.smyl_predictions, scale)
        owa_smyl = OWA(mase_smyl, smape_smyl)

        self.assertEqual(round(smape_smyl, 3), 11.374, "Should be 11.374")
        self.assertEqual(round(mase_smyl, 3), 1.536, "Should be 1.536")
        self.assertEqual(round(owa_smyl, 3), 0.821, "Should be 0.821")
Esempio n. 5
0
 def test_owa(self):
     smape_smyl = SMAPE(self.test_data, self.smyl_predictions)
     smape_montero = SMAPE(self.test_data, self.montero_predictions)
     smape_naive = SMAPE(self.test_data, self.naive_predictions)
     smape_naive2 = SMAPE(self.test_data, self.naive2_predictions)
     mase_smyl = MASE(self.test_data, self.smyl_predictions, scale)
     mase_montero = MASE(self.test_data, self.montero_predictions, scale)
     mase_naive = MASE(self.test_data, self.naive_predictions, scale)
     mase_naive2 = MASE(self.test_data, self.naive2_predictions, scale)
     owa_smyl = round(OWA(mase_smyl, smape_smyl), 3)
     owa_montero = round(OWA(mase_montero, smape_montero), 3)
     owa_naive = round(OWA(mase_naive, smape_naive), 3)
     owa_naive2 = round(OWA(mase_naive2, smape_naive2), 3)
     self.assertEqual(owa_smyl, 0.821, "Should be 0.821")
     self.assertEqual(owa_montero, 0.838, "Should be 0.838")
     self.assertEqual(owa_naive, 1.058, "Should be 1.058")
     self.assertEqual(owa_naive2, 1.000, "Should be 1.000")
Esempio n. 6
0
def score_M4(
    predictions: np.array, df_results_name: str = "GPTime/results/M4/test.csv", val:bool=False
) -> Dict:
    """ Calculating the OWA. Return dict of scores of subfrequencies also."""
    frequency_metrics: Dict[str, Dict[str, float]] = {}
    # Read in and prepare the data
    if val:
        all_test_files = glob.glob(cfg.path.m4_val_test + "*")
        all_train_files = glob.glob(cfg.path.m4_val_train + "*")
    else:
        all_test_files = glob.glob(cfg.path.m4_test + "*")
        all_train_files = glob.glob(cfg.path.m4_train + "*")
    # Removing hourly for the zero-shot part
    #all_train_files = [fname for fname in all_train_files if "hourly" not in fname.lower()]
    #all_test_files = [fname for fname in all_test_files if "hourly" not in fname.lower()]
    all_test_files.sort()
    all_train_files.sort()
    crt_pred_index = 0
    tot_mase = 0.0
    tot_smape = 0.0
    for fname_train, fname_test in zip(all_train_files, all_test_files):
        #logger.info(fname_test)
        #logger.info(fname_train)
        df_train = pd.read_csv(fname_train, index_col=0)
        df_test = pd.read_csv(fname_test, index_col=0)
        period_num, period_str = period_from_fname(
            fname=fname_train, period_dict=cfg.scoring.m4.periods
        )
        horizon = cfg.scoring.m4.horizons[period_str]

        Y = df_test.values[:, :horizon]
        index = crt_pred_index + Y.shape[0]
        predicted = predictions[crt_pred_index:index, :horizon]
        #logger.info(f"predicted.shape: {predicted.shape}")
        
        assert np.sum(np.isnan(Y)) == 0, "NaNs in Y"
        assert np.sum(np.isnan(predicted)) == 0, f"NaNs in predictions: {np.where(np.isnan(predicted))}"
        assert Y.shape == predicted.shape, "Y and predicted have different shapes"

        #scale = Scaler().fit(df_train.values, freq=period_num).scale_.flatten()
        scale = MASEScaler().fit(df_train.values, freq=period_num).scale_.flatten()

        mase_freq = MASE(Y, predicted, scale)
        smape_freq = SMAPE(Y, predicted)
        owa_freq = OWA(mase=mase_freq, smape=smape_freq, freq=period_str)
        tot_mase += mase_freq * Y.shape[0]
        tot_smape += smape_freq * Y.shape[0]
        #logger.debug(f"mase_freq = {mase_freq}")
        #logger.debug(f"smape_freq = {smape_freq}")
        frequency_metrics[period_str] = {}
        frequency_metrics[period_str]["MASE"] = mase_freq
        frequency_metrics[period_str]["SMAPE"] = smape_freq
        frequency_metrics[period_str]["OWA"] = owa_freq

        crt_pred_index += Y.shape[0]
    
    tot_mase = tot_mase / crt_pred_index
    tot_smape = tot_smape / crt_pred_index
    tot_owa = OWA(tot_mase, tot_smape, freq="global")

    frequency_metrics["GLOBAL"] = {}
    frequency_metrics["GLOBAL"]["MASE"] = tot_mase
    frequency_metrics["GLOBAL"]["SMAPE"] = tot_smape
    frequency_metrics["GLOBAL"]["OWA"] = tot_owa

    df = pd.DataFrame(frequency_metrics).T
    df.to_csv(df_results_name)

    return frequency_metrics
Esempio n. 7
0
def score_M4(predictions: np.array,
             df_results_name: str = "GPTime/results/M4/test.csv") -> Dict:
    """ Calculating the OWA. Return dict of scores of subfrequencies also."""
    """
    metrics = {}
    frequency_metrics = {}
    for metric in cfg.scoring.metrics.keys():
        if cfg.scoring.metrics[metric]:
            metrics[metric] = []
            frequency_metrics[metric] = []
    """
    frequency_metrics: Dict[str, Dict[str, float]] = {}
    # Read in and prepare the data
    all_test_files = glob.glob(cfg.path.m4_test + "*")
    all_train_files = glob.glob(cfg.path.m4_test + "*")
    crt_pred_index = 0
    tot_mase = 0.0
    tot_smape = 0.0
    for fname_train, fname_test in zip(all_train_files, all_test_files):
        df_train = pd.read_csv(fname_train, index_col=0)
        df_test = pd.read_csv(fname_test, index_col=0)

        period_num, period_str = period_num_str_file(
            fname=fname_train, period_dict=cfg.scoring.m4.periods)
        horizon = cfg.scoring.m4.horizons[period_str]
        scale = (df_train.diff(
            periods=period_num,
            axis=1).abs().mean(axis=1).reset_index(drop=True)).values

        Y = df_test.values[:, :horizon]
        index = crt_pred_index + Y.shape[0]
        predicted = predictions[crt_pred_index:index, :horizon]

        assert np.sum(np.isnan(Y)) == 0, "NaNs in Y"
        assert np.sum(np.isnan(predicted)) == 0, "NaNs in predictions"
        assert Y.shape == predicted.shape, "Y and predicted have different shapes"

        mase_freq = MASE(Y, predicted, scale)
        smape_freq = SMAPE(Y, predicted)
        owa_freq = OWA(mase=mase_freq, smape=smape_freq, freq=period_str)
        tot_mase += mase_freq * Y.shape[0]
        tot_smape += smape_freq * Y.shape[0]

        frequency_metrics[period_str] = {}
        frequency_metrics[period_str]["MASE"] = mase_freq
        frequency_metrics[period_str]["SMAPE"] = smape_freq
        frequency_metrics[period_str]["OWA"] = owa_freq

        crt_pred_index += Y.shape[0]

    tot_mase = tot_mase / crt_pred_index
    tot_smape = tot_smape / crt_pred_index
    tot_owa = OWA(tot_mase, tot_smape, freq="global")

    frequency_metrics["GLOBAL"] = {}
    frequency_metrics["GLOBAL"]["MASE"] = tot_mase
    frequency_metrics["GLOBAL"]["SMAPE"] = tot_smape
    frequency_metrics["GLOBAL"]["OWA"] = tot_owa

    df = pd.DataFrame(frequency_metrics).T
    df.to_csv(df_results_name)

    return frequency_metrics