def __init__(self): EDM.__init__(self) # force this class to hold some extra params to read the external information # into a root file. This is call by metadata information. Usually, this metadata # is stored into the same basepath as the main ttree (event). self._useMetadataParams = True # the name of the ttree metadata where is stored the information # do not change is name. self._metadataName = 'tdt' # decision core (default) self._core = DecisionCore.TriggerDecisionTool
def __init__(self): EDM.__init__(self) # Detector ROI dimesions: # |--------- EM ----------|----------- HAD ----------| # 15cm 30cm 3cm 40cm 40cm 20cm # + +--------------------------------------------------+ # | | | | | | | | # 48cm | | | | | | | # | | | | | | | | # + +--------------------------------------------------+ # Eletromagnetic layers self._first_em_sampling = NotSet self._second_em_sampling = NotSet self._third_em_sampling = NotSet # Hadronic layers self._first_had_sampling = NotSet self._second_had_sampling = NotSet self._third_had_sampling = NotSet
def __init__(self): self._elCand = 2 EDM.__init__(self)
def __init__(self): EDM.__init__(self)
def __init__(self, **kw): EDM.__init__(self) self.__dict__.update( ('_' + k, v) for k, v in kw.items() if k in self.__allow_keys)
def __init__(self): EDM.__init__(self) self._nrings = [46, 5, 5, 4, 4, 2] # 86 rings self._ringsE = [0.0 for _ in range(sum(self._nrings))]