Esempio n. 1
0
    def sufficientStats( cls, x, constParams=None ):
        # Compute T( x ).  This is for when we're treating this class as P( x, y | Ѳ )

        if( cls.dataN( x ) > 1 ):
            t = [ 0, 0, 0, 0, 0, 0, 0, 0 ]
            for _x, _ys in zip( *x ):
                s = cls.sufficientStats( ( _x, _ys ), constParams=constParams )
                for i in range( 8 ):
                    t[ i ] += s[ i ]
            return tuple( t )

        ( x, ys ) = x
        u = constParams

        xIn  = x[ :-1 ]
        xOut = x[ 1: ] - u[ :-1 ]

        t1, t2, t3 = Regression.sufficientStats( x=( xIn, xOut ), constParams=constParams )
        t4, t5, t6 = Regression.sufficientStats( x=( x, ys ), constParams=constParams )
        t7, t8 = Normal.sufficientStats( x=x[ 0 ], constParams=constParams )
        return t1, t2, t3, t4, t5, t6, t7, t8
Esempio n. 2
0
 def initialStats( cls, x, constParams=None ):
     # Assumes that only a single element is passed in
     assert x.ndim == 1
     return Normal.sufficientStats( x=x, constParams=constParams )