Esempio n. 1
0
def sample_cutoff(test):
    print "** Sampling for Real Space"
    samples_dir = Config.get_test_samples_dir(Config.test)
    Config.create_dir(samples_dir)

    lmp_config = PPPMUtilities.LammpsPPPMConfig()
    lmp_config.npart = test.npart
    lmp_config.timesteps = test.timesteps
    lmp_config.ewald = real_space_sampling_params["ewald"]
    # cutoff set in the loop
    lmp_config.order = real_space_sampling_params["order"]
    lmp_config.grid = real_space_sampling_params["grid"]
    lmp_config.mixing = test.mixing
    lmp_config.diff = test.diff_mode
    #
    cutoffs = get_sampled_cutoffs(test.npart, test.domain, test.box)
    timings = [None for _ in cutoffs]

    ewald = rsp["ewald"]
    P = rsp["order"]
    grid = rsp["grid"]
    for i, c in enumerate(
            get_sampled_cutoffs(test.npart, test.domain, test.box)):
        try:
            t = extract_timings_from_log( os.path.join(samples_dir, "Output-%s-%s-%.2f-%.2f-%d-%dx%dx%d" % \
                    (test.diff_mode, test.mixing, ewald, c, P, grid[0], grid[1], grid[2])) )[1]
            timings[i] = t
        except Exception, e:
            pass
Esempio n. 2
0
def fit_neigh(test):
    samples_dir = Config.get_test_samples_dir(Config.test)
    cutoffs, timings = [], []

    ewald = rsp["ewald"]
    P = rsp["order"]
    grid = rsp["grid"]
    for c in get_sampled_cutoffs(test.npart, test.domain, test.box):
        try:
            t = extract_timings_from_log( os.path.join(samples_dir, "Output-%s-%s-%.2f-%.2f-%d-%dx%dx%d" % \
                    (test.diff_mode, test.mixing, ewald, c, P, grid[0], grid[1], grid[2])) )[3]
            cutoffs.append(c)
            timings.append(t)
        except Exception, e:
            pass
Esempio n. 3
0
def fit_samples(npart, domain, box, mixing, np, nn, ts, diff):
    cwd = os.getcwd()
    os.chdir(Config.get_test_samples_dir(Config.test))

    fits = []

    fit_cutoff(Config.test)
    fits.append(get_real_space_prediction)

    fit_neigh(Config.test)
    fits.append(get_neigh_prediction)

    # kspace samples
    ewald = ksp["ewald"]
    cutoffs = get_sampled_cutoffs(npart, domain, box)
    _c.extend((cutoffs[0], cutoffs[-1]))
    Ps = get_sampled_Ps(npart, domain, box)
    grids = get_sampled_grid_sizes(npart, domain, box)
    for i, cutoff in enumerate([cutoffs[0], cutoffs[-1]]):
        _kspace_piecewise[i].extend(
            [None for _ in range(Ps[0] - Config.order_values[0])])
        for P in Ps:
            timings = []
            gs = []
            for grid in grids:
                try:
                    t = extract_timings_from_log(
                        "Output-%s-%s-%.2f-%.2f-%d-%dx%dx%d" %
                        (diff, mixing, ewald, cutoff, P, grid[0], grid[1],
                         grid[2]))[2]
                    gs.append(grid)
                    timings.append(t)
                except Exception, e:
                    pass
            try:
                x, y = filter_data([mult(g_) for g_ in gs], timings)
                bounds, fit_vars = topdown.top_down(numpy.array(x),
                                                    numpy.array(y),
                                                    kspace_fitting_f)
                _kspace_piecewise[i].append((bounds, fit_vars))
            except ValueError, e:
                print e
                print >> sys.stderr, "Cannot fit. Infs or Nans found."
                (p, g) = (float('NaN'), float('NaN'))
                raise Exception
Esempio n. 4
0
def sample(lmp_config, target, value):
    if target in ("cutoff", "neigh"):
        lmp_config.cutoff = value
        if target == "cutoff":
            log_pos = 1
        else:
            log_pos = 3
        print "Sampling cutoff:", value
    elif target == "kspace":  # gonna need to deal with grid and mult(grid)
        lmp_config.grid = value
        log_pos = 2
        print "Sampling grid:", value
    #return
    # Set paths and write lammps config file
    lmp_config.set_file_paths(Config.get_test_samples_dir(Config.test))
    lmp_config.write_config_file(lmp_config.infile)
    #
    done = False
    attempt = 1
    while not done and attempt <= 10:
        try:
            os.remove(lmp_config.outfile)
        except OSError:
            pass
        try:
            #subprocess32.check_call("mpirun -np %d $HOME/MD-libs/lammps-22Jan14/src/lmp_openmpi -l /dev/null < %s > %s" % (Config.test.nprocesses, lmp_config.infile, lmp_config.outfile), shell=True, timeout=1500)
            subprocess32.check_call(
                "$MPIEXEC -np %d $HOME/MD-libs/lammps-22Jan14/src/lmp_openmpi -l /dev/null < %s > %s"
                % (Config.test.nprocesses, lmp_config.infile,
                   lmp_config.outfile),
                shell=True,
                timeout=1500)
            t = extract_timings_from_log(lmp_config.outfile)[log_pos]
            if not math.isnan(t):
                done = True
        except subprocess32.TimeoutExpired:
            pass
        attempt += 1
    if done:
        return t
    else:
        raise Exception
Esempio n. 5
0
def sample_kspace(test):
    print "** Sampling for KSpace"
    samples_dir = Config.get_test_samples_dir(Config.test)
    Config.create_dir(samples_dir)

    lmp_config = PPPMUtilities.LammpsPPPMConfig()
    lmp_config.npart = test.npart
    lmp_config.timesteps = test.timesteps
    lmp_config.ewald = kspace_sampling_params["ewald"]
    lmp_config.mixing = test.mixing
    lmp_config.diff = test.diff_mode
    #
    grids = get_sampled_grid_sizes(test.npart, test.domain, test.box)
    grids_cont = [mult(g) for g in grids]
    Ps = get_sampled_Ps(test.npart, test.domain, test.box)
    #
    cutoffs = get_sampled_cutoffs(test.npart, test.domain, test.box)
    c_min = cutoffs[0]
    c_max = cutoffs[-1]

    ewald = kspace_sampling_params["ewald"]
    for c in [c_min, c_max]:
        lmp_config.cutoff = c
        for P in Ps:
            lmp_config.order = P
            timings = [None for _ in grids]
            for i, g in enumerate(grids):
                try:
                    t = extract_timings_from_log( os.path.join(samples_dir, "Output-%s-%s-%.2f-%.2f-%d-%dx%dx%d" % \
                            (test.diff_mode, test.mixing, ewald, c, P, g[0], g[1], g[2])) )[2]
                    if not math.isnan(t):
                        timings[i] = t
                except Exception, e:
                    print c, P, g, e
                    pass
            dynamic_sampling(lmp_config, "kspace", grids_cont, grids, timings,
                             kspace_fitting_f)