Esempio n. 1
0
 def __init__(self, name='', colors=''):
     self.geom = Geom()  # geom extracted from the cube
     self.wpcube = ''  # web path to the .cube
     self.name = name
     self.colors = colors
     self.isotype = ''
     self.isovalue = '0.03'
Esempio n. 2
0
 def getGeom(ar,atnum,atnames,start=0):
     Bohr = 0.52917721
     g = Geom()
     atbase = start
     for i in range(atnum):
         atn = atnames[i]
         xyz = ar[atbase:atbase+3]
         x, y, z = map(lambda k: float(k)*Bohr, xyz)
         g.coord.append('%s %f %f %f' % (atn,x,y,z))
         atbase += 3
     pc = AtomicProps(attr='atnames',data=atnames)
     g.addAtProp(pc,visible=False) # We hide it, because there is no use to show atomic names for each geometry using checkboxes
     return g
 def getGeom(ar, atnum, atnames, start=0):
     Bohr = 0.52917721
     g = Geom()
     atbase = start
     for i in range(atnum):
         atn = atnames[i]
         xyz = ar[atbase:atbase + 3]
         x, y, z = map(lambda k: float(k) * Bohr, xyz)
         g.coord.append('%s %f %f %f' % (atn, x, y, z))
         atbase += 3
     pc = AtomicProps(attr='atnames', data=atnames)
     g.addAtProp(
         pc, visible=False
     )  # We hide it, because there is no use to show atomic names for each geometry using checkboxes
     return g
Esempio n. 4
0
 def __init__(self,name='',colors=''):
     self.geom = Geom() # geom extracted from the cube
     self.wpcube = '' # web path to the .cube
     self.name = name
     self.colors = colors
     self.isotype = ''
     self.isovalue = '0.03'
 def getPrim(self, prim):
     if prim not in self.primitives:
         try:
             self.primitives[prim] = Geom.fromPly(f'primitives/{prim}.ply')
         except:
             raise RuntimeError(f'Unable to open primitive object {prim}')
     return self.primitives[prim]
Esempio n. 6
0
class Cube(Top):
    """
    Shows 3D-properties from the .cube file

    How to do it:
        1) Specify the file name
        2) Specify the isosurface value to be plot (or give choice via UI elements)
        3) If we have .cube file somewhere else than terse-pics, then make a copy in terse-pics
        .) Read XYZ coordinates from the cube file
        .) Generate HTML code for XYZ coordinates
        4) Generate HTML code to put into b1
        5) In b2, make a checkbox

    In perspective, we might want to plot several surfaces in one JmolApplet (simultaneously or only one at time).

    How are we going to use it?
        [V] U1) Show single .cube file content (here, we use terse as a .cube file parser)
        U2) Parse .fchk file: extract selected/all properties and show them. In this case, we will
            need to load JmolApplet and XYZ file once, and use UI elements to choose properties of interest and isosurface values
        U3) Show NBO interactions. We will need text parser to find orbital interactions (from Gaussian output), and show them
            by pairs of orbitals (donor/acceptor).
        U4) Show TD-DFT transitions. If we use natural transition orbitals (BTW what are they?), then we probably would have
            to show list of orbitals. If we parse excited state compositions from Gaussian output, then we again would have
            list of pairs of orbitals (for each excited state, dominant transition should be shown in the form of from-->to orbitals).

    How are we going to realize it?
        1) Eventually, for each property, we will need to plot an isosurface, so Cube should have a function which returns
            a Jmol script line that loads isosurface in the existing Jmol window
        2) .webdata function should solve problem U1
        3) Problem U2 should be solved via FchkGaussian class (it would be cool to parse FchkGaussin, as it has a lot of
            information about the calculations, so we can show geometries, freqs, charges, and other properties as well
            as Electrostatic potentials and other space-distributed properties
        4) For problem U3, special class should be created, which will be activated by command-line options
            (because only specific Gaussian input files can generate .fchk with NBO orbitals; and both .chk and .log files should be provided)
        5) To solve U4, we need both .log and .chk files, so it should be a special kind of input for terse.py.
            Probably, there is no other special reasons for not to show these things by default.
        *) What we can do: add a global key that allows to look up for .chk file (from Gaussian log file or just by assuming that 
            chk file has the same basename as the log file)

    Notes:
        1) ESP should be treated in a special way, as it needs density cube and ESP cube
        2) What about showing ESP critical points on the ESP isodensity surface? (though, is not it too complicated and out of scope of this program?)
        3) It's trivial to combine cubes! (multiply,divide,sum,substract and so on)

    OK, so what's the plan?
        [V] 1) Cube should be just a helper class with few functions:
            [V] ) extract molecular XYZ;
            [V] ) generate scipt for Jmol to show isosurface with a given isovalue
            [V] ) 'parse' single .cube files (like we do it with .xyz and Gau);
        So, I can start with implementing this functionality
        2) Solve U2. I will plan it a little later

    """
    def __init__(self,name='',colors=''):
        self.geom = Geom() # geom extracted from the cube
        self.wpcube = '' # web path to the .cube
        self.name = name
        self.colors = colors
        self.isotype = ''
        self.isovalue = '0.03'


    def parse(self):
        self.extractXYZ()

        if not self.wpcube: # A trick: if self.wpcube is given, we don't copy file
            rp = self.settings.real_path('.cube')
            self.wpcube = self.settings.web_path('.cube')
            shutil.copy(self.file,rp)
            self.file = rp

        """
        Normally, this kind of things are defined in webdata,
        but we need to do it here, because it might be redefined
        by make_JVXL; and it would be uglier to put make_JVXL
        into webdata
        """
        we = self.settings.Engine3D()
        if self.settings.useJVXL:
            self.s_script = we.jmol_isosurface(webpath = self.file, isovalue=self.isovalue, surftype=self.isotype, use_quotes=True, name=self.name, colors=self.colors)

            self.J = self.make_JVXL()
            if not self.settings.save_cube:
                os.remove(self.file)
        else:
            self.s_script = we.jmol_isosurface(webpath = self.wpcube, name=self.name, colors=self.colors)



    def extractXYZ(self):
        Bohr = 0.52917721

        try:
            FI = open(self.file)
            log.debug('%s was opened for reading' %(self.file))
        except:
            log.error('Cannot open %s for reading' %(self.file))

        comment1 = FI.readline()
        comment2 = FI.readline()

        line3 = FI.readline().split()
        natoms = abs(int(line3[0]))

        V1 = FI.readline()
        V2 = FI.readline()
        V3 = FI.readline()

        for _ in range(natoms):
            s = FI.readline().strip().split()
            elN, xyz = s[0], list(map(lambda x: str(float(x)*Bohr), s[2:]))
            self.geom.coord.append('%s    %s  %s  %s\n' % tuple([elN]+xyz))

        FI.close()
        log.debug('%s parsed successfully' % (self.file))
        return


    def webdata(self):
        """
        Makes HTML row.
        return: b1,b2
        """

        we = self.settings.Engine3D()
        wp = self.geom.write(fname='.xyz')
        b1 = we.JMolApplet(webpath = wp)

        iso_on = self.s_script
        iso_off = 'isosurface off'
        b2 = we.html_button(iso_on, label='Isosurface On') + we.html_button(iso_off, label='Off')

        log.debug('webdata generated successfully')
        return b1, b2


    def make_JVXL(self):
        """
        * [V] It is to be called by parser
        * [V] At the moment of call, Jmol script line has to be known
        * make_JVXL should call external Jmol
        * make_JVXL will return updated Jmol script command
        """
        J = JVXL()
        J.file = re.sub('cube$','jvxl',self.file)
        J.wp = re.sub('cube$','jvxl',self.wpcube)
        #J.file = self.settings.real_path('.jvxl')
        #J.wp =  self.settings.web_path('.jvxl')

        #subprocess.call(['awk','-i','inplace','{if (NR==3) {print substr($0,1,41)} else {print}}\'",fcube])
        log.debug('Trimming line 3 in %s:' % (self.file))
        os.system('awk -i inplace \'{if (NR==3) {print substr($0,1,41)} else {print}}\' '+self.file) # Hack to make the new format of .cube file compatible with Jmol
        #os.system('head -n3 '+self.file)

        s = "%s; write jvxl %s" % (self.s_script,J.file)
        execute_Jmol(self.settings.JmolAbsPath, s)
        we = self.settings.Engine3D()
        J.s_script = we.jmol_jvxl(webpath = J.wp, name=self.name)
        self.s_script = J.s_script
        return J
Esempio n. 7
0
    def parse(self):
        """
        Actual parsing happens here
        """

        t_ifreq_done = False
        self.all_coords = {}

        s = 'BLANC' # It got to be initialized!
        while not self.FI.eof:
            next(self.FI)
            if self.FI.eof:
                break
            s = self.FI.s.rstrip()

            #
            # ---------------------------------------- Read in cartesian coordinates ----------------------------------
            #
            # Have we found coords?
            enter_coord = False
            if s.find('CARTESIAN COORDINATES (ANGSTROEM)')==0:
                coord_type = 'Cartesian Coordinates (Ang)'
                enter_coord = True

            # If yes, then read them
            if enter_coord:
                try:
                    # Positioning
                    dashes1 = next(self.FI)
                    s = next(self.FI)
                    # Read in coordinates
                    geom = Geom()
                    atnames = []
                    while len(s)>1:
                        xyz = s.strip().split()
                        try:
                            atn, x,y,z = xyz[0], xyz[1],xyz[2],xyz[3]
                        except:
                            log.warning('Error reading coordinates:\n%s' % (s))
                            break
                        atnames.append(atn)
                        geom.coord.append('%s %s %s %s' % (atn,x,y,z))
                        s = next(self.FI)
                    # Add found coordinate to output
                    pc = AtomicProps(attr='atnames',data=atnames)
                    geom.addAtProp(pc,visible=False) # We hide it, because there is no use to show atomic names for each geometry using checkboxes

                    if not coord_type in self.all_coords:
                        self.all_coords[coord_type] = {'all':ListGeoms(),'special':ListGeoms()}

                    self.all_coords[coord_type]['all'].geoms.append(geom)

                except StopIteration:
                    log.warning('EOF while reading geometry')
                    break

            #
            # ------------------------------------------- Route lines -------------------------------------------------
            #
            if s.find('Your calculation utilizes the basis')==0:
                self.basis = s.split()[5]

            if s.find(' Ab initio Hamiltonian  Method')==0:
                self.lot = s.split()[5]

            if s.find(' Exchange Functional')==0:
                self.lot = s.split()[4]

            if s.find('  Correlation Functional')==0:
                s_corr = s.split()[4]
                if s_corr != self.lot:
                    self.lot = s.split()[4] + s_corr

            if s.find('Correlation treatment')==0:
                self.lot = s.split()[3]

            if s.find('Perturbative triple excitations            ... ON')==0:
                self.lot += '(T)'

            if s.find('Calculation of F12 correction              ... ON')==0:
                self.lot += '-F12'

            if s.find('Integral transformation                    ... All integrals via the RI transformation')==0:
                self.lot += '-RI'

            if s.find('K(C) Formation')==0:
                if 'RI' in s and 'RI' in self.lot:
                    self.lot = self.lot.replace('RI',s.split()[3])
                else:
                    self.lot += '+'+s.split()[3]

            if s.find('Hartree-Fock type      HFTyp')==0:
                if s.split()[3]=='UHF':
                    self.openShell = True

            if s.find('T1 diagnostic')==0:
                self.T1_diagnostic = s.split()[3]

            if s.find('E(CCSD(T))                                 ...')==0:
                self.postHF_lot.append('CCSD(T)')
                self.postHF_e.append(s.split()[2])
                self.postHF["CCSD(T)"]=s.split()[2]

            if s.find('E(CCSD)                                    ...')==0:
                self.postHF_lot.append('CCSD')
                self.postHF_e.append(s.split()[2])
                self.postHF["CCSD"]=s.split()[2]

            if s.find('               *           SCF CONVERGED AFTER')==0:
                self.FI.skip_until('Total Energy')
                self.scf_e = float(self.FI.s.split()[3])
                self.scf_done = True
                for ct in self.all_coords.values():
                    if ct['all']:
                        ct['all'][-1].addProp('e', self.scf_e) # TODO Read in something like self.best_e instead!

            # S^2
            if s.find('Expectation value of <S**2>     :')==0:
                s_splitted = s.split()
                before = s_splitted[5]
                self.s2 = before
                for ct in self.all_coords.values():
                    if ct['all']:
                        ct['all'][-1].addProp('s2',self.s2)

            if s.find('                       * Geometry Optimization Run *')==0:
                self.JobType = 'opt'

            if 'opt' in self.JobType:
                if s.find('          ----------------------|Geometry convergence')==0:
                    self.opt_iter += 1
                    try:
                        next(self.FI) # skip_n Item value
                        next(self.FI) # skip_n ------
                        for conv in ('max_force','rms_force','max_displacement','rms_displacement'):
                            s = next(self.FI)
                            x, thr = float(s.split()[2]),float(s.split()[3])
                            conv_param = getattr(self,conv)
                            conv_param.append(x-thr)
                            for ct in self.all_coords.values():
                                if ct['all']:
                                    ct['all'][-1].addProp(conv, x-thr)
                    except:
                        log.warning('EOF in the "Converged?" block')
                        break
                if s.find('                    ***        THE OPTIMIZATION HAS CONVERGED     ***')==0:
                    self.opt_ok = True
            #
            # -------------------------------------------- Scan -------------------------------------------------------
            #
            if s.find('                       *    Relaxed Surface Scan    *')==0:
                self.JobType = 'scan'

            if 'scan' in self.JobType:
                """
                Order of scan-related parameters:
                    1. Geometry,
                    2. Energy calculated for that geometry
                    3. Optimization convergence test
                If Stationary point has been found, we already have geometry with energy attached as prop, so we just pick it up
                """
                # Memorize scan geometries
                if s.find('                    ***        THE OPTIMIZATION HAS CONVERGED     ***')==0:
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['special'].geoms.append(ct['all'][-1])
                # Record scanned parameters
                # Designed to work properly only for 1D scans!
                if s.find('         *               RELAXED SURFACE SCAN STEP')==0:
                    next(self.FI)
                    s = next(self.FI)
                    param = s[12:45].strip()
                    # Will work properly only for bonds at this point
                    mt=re.compile('Bond \((.*?),(.*?)\)').match(param)
                    param = 'Bond(' + str(1+int(mt.group(1))) + ',' + str(1+int(mt.group(2))) + ')'

                    param_full = float(s[46:59].strip())
                    #print('|'+s[46:59]+'|'+str(param_full))
                    for ct in self.all_coords.values():
                        if ct['special']:
                            ct['special'][-1].addProp(param,param_full)

            #
            # ---------------------------------------- Read simple values ---------------------------------------------
            #

            #Nproc
            if s.find('           *        Program running with 4') == 0:
                self.n_cores = s.split()[4]

            # Read Symmetry
            if s.find('POINT GROUP')==0:
                self.sym = s.split()[3]

            # Read charge_multmetry
            if s.find('Total Charge           Charge')==0:
                self.charge = s.split(4)
            if s.find('Multiplicity           Mult')==0:
                self.mult = s.split(4)

            if 'ORCA TERMINATED NORMALLY' in s:
                self.OK = True
                next(self.FI)
                break

        # We got here either 
        self.blanc = (s=='BLANC')
        return
Esempio n. 8
0
    def parse(self):
        """
        Actual parsing happens here
        """

        self.all_coords = {}

        """
        Occur only in the first entrance, so we just safely skip
        these two lines right after opening the file
        s01                          = self.FI.nstrip()
        s02                          = self.FI.nstrip()
        """
        try:
            s03                          = self.FI.nstrip()
        except:
            self.blanc = True
            return
        s04_compnode                 = self.FI.nstrip()
        s05_type                     = self.FI.nstrip()
        s06_lot                      = self.FI.nstrip()
        s07_basis                    = self.FI.nstrip()
        s08_stochiometry_charge_mult = self.FI.nstrip()
        s09_user                     = self.FI.nstrip()
        s10_date                     = self.FI.nstrip()
        s11                          = self.FI.nstrip()
        s12                          = self.FI.nstrip()
        s13_route                    = self.FI.nstrip()
        s14                          = self.FI.nstrip()
        s15_comment                  = self.FI.nstrip()
        s16                          = self.FI.nstrip()
        s17_charge_mult              = self.FI.nstrip()
        s18_geom                     = self.FI.getBlock(StartOffset=1)
        s_ag_variables               = self.FI.getBlock(StartOffset=1) # after geometry

        self.OK = True
        # Read in values in the header part
        self.JobType = s05_type.lower()
        self.lot = s06_lot
        self.basis = s07_basis
        self.extra = s13_route
        self.comments = s15_comment
        self.charge, self.mult = s17_charge_mult.split(',')

        if 'scrf' in s13_route.lower():
            solvent = re.search('scrf.*solvent\s*=\s*(\w+)',s13_route.lower())
            if solvent:
                self.solvent = solvent.group(1)
        # Read in geom
        geom = Geom()
        atnames = []
        for s in s18_geom:
            xyz = s.strip().split(',')
            try:
                atn, x,y,z = xyz[0], xyz[-3],xyz[-2],xyz[-1]
            except:
                log.warning('Error reading coordinates:\n%s' % (s))
                break
            atnames.append(atn)
            geom.coord.append('%s %s %s %s' % (atn,x,y,z))
        pc = AtomicProps(attr='atnames',data=atnames)
        geom.addAtProp(pc,visible=False)
        self.geoms.geoms.append(geom)

        # Read in variables
        vrs = {}
        for s in s_ag_variables:
            k,v = s.split('=')
            vrs[k] = v

        if 'S2A' in vrs:
            self.s2 = '%s / %s' % (vrs['S2'],vrs['S2A'])

        if 'HF' in vrs:
            self.scf_e = float(vrs['HF'])

        if 'NImag' in vrs:
            self.nimag = float(vrs['NImag'])
            if self.nimag > 0:
                self.extra += 'Imaginary freqs found!'

        try:
            self.FI.skip_until('@1')
        except:
            pass
        return
Esempio n. 9
0
    def parse(self):
        """
        Actual parsing happens here
        """
        t_ifreq_done = False
        basis_FN = ''
        rc = self.rc


        s = 'BLANK' # It got to be initialized!
        try:
            while True:
                next(self.FI)
                s = self.FI.s.rstrip()

                #
                # Try to save some time by skipping parsing of large noninformative blocks of output
                #
                # Does not work for AM1 calcs
                """
                # Skip parsing of SCF iterations
                if s.find(' Cycle')==0:
                    while not s == '':
                        s = next(self.FI).rstrip()
                """
                # Skip parsing of distance matrices
                if s.find('Distance matrix (angstroms):')==20:
                    n = len(self.all_coords[coord_type]['all'][-1])
                    #print('n=',n)
                    a1 = n % 5
                    an = n
                    num = int((an-a1)/5) + 1

                    n_lines_to_skip = num * (a1 + an) / 2
                    if a1==0:
                        num -= 1
                    n_lines_to_skip += num * (1+num) / 2
                    self.FI.skip_n(int(n_lines_to_skip))
                    s = self.FI.s.rstrip()

                #
                # ---------------------------------------- Read in cartesian coordinates ----------------------------------
                #
                # Have we found coords?
                enter_coord = False
                if ' orientation:' in s:
                    coord_type = s.split()[0]
                    enter_coord = True
                if s.find('                Cartesian Coordinates (Ang):')==0:
                    coord_type = 'Cartesian Coordinates (Ang)'
                    enter_coord = True
                # If yes, then read them
                if enter_coord:
                    # Positioning
                    dashes1 = next(self.FI)
                    title1  = next(self.FI)
                    title2  = next(self.FI)
                    dashes2 = next(self.FI)
                    s = next(self.FI)
                    # Read in coordinates
                    geom = Geom()
                    atnames = []
                    while not '-------' in s:
                        xyz = s.strip().split()
                        try:
                            ati, x,y,z = xyz[1], xyz[-3],xyz[-2],xyz[-1]
                        except:
                            log.warning('Error reading coordinates:\n%s' % (s))
                            break
                        atn = ChemicalInfo.at_name[int(ati)]
                        atnames.append(atn)
                        geom.coord.append('%s %s %s %s' % (atn,x,y,z))
                        s = next(self.FI)
                    # Add found coordinate to output
                    pc = AtomicProps(attr='atnames',data=atnames)
                    geom.addAtProp(pc,visible=False) # We hide it, because there is no use to show atomic names for each geometry using checkboxes

                    if not coord_type in self.all_coords:
                        self.all_coords[coord_type] = {'all':ListGeoms(),'special':ListGeoms()}
                    self.all_coords[coord_type]['all'].geoms.append(geom)

                #
                # ------------------------------------------- Route lines -------------------------------------------------
                #
                if s.find(' #')==0:
                    # Read all route lines
                    s2 = s
                    while not '-----' in s2:
                        self.route_lines += ' ' + s2[1:]
                        s2 = next(self.FI).rstrip()
                    self.route_lines = self.route_lines.lower()
                    self.iop = rc['iop'].findall(self.route_lines)
                    self.route_lines = re.sub('iop\(.*?\)','',self.route_lines) # Quick and dirty: get rid of slash symbols

                    # Get Level of Theory
                    # Look for standard notation: Method/Basis
                    lot = rc['/'].search(self.route_lines)
                    # print self.route_lines
                    if lot:
                        self.lot, self.basis = lot.group(1).split('/')
                        if self.basis == 'gen' and basis_FN: # Read basis from external file
                            self.basis = basis_FN
                    else:
                        # Look for method and basis separately using predefined lists of standard methods and bases
                        lt = self.inroute(self.lot_nobasis,self.route_lines)
                        if lt:
                            self.lot = lt
                        bs = self.inroute(self.def_basis,self.route_lines)
                        if bs:
                            self.basis = bs

                    # Extract %HF in non-standard functionals
                    for iop in self.iop:
                        if '3/76' in iop:
                            encrypted_hf = iop.split('=')[1]
                            str_hf = encrypted_hf[-5:]
                            num_hf = float(str_hf[:3]+'.'+str_hf[3:])
                            self.lot_suffix += '(%.2f %%HF)' %(num_hf)

                    # Read solvent info
                    if 'scrf' in self.route_lines:
                        solvent = rc['scrf-solv'].search(self.route_lines)
                        if solvent:
                            self.solvent = solvent.group(1)

                    # Get job type from the route line
                    self.route_lines = re.sub('\(.*?\)','',self.route_lines) # Quick and dirty: get rid of parentheses to get a string with only top level commands
                    self.route_lines = re.sub('=\S*','',self.route_lines) # Quick and dirty: get rid of =... to get a string with only top level commands
                    jt = self.inroute(('opt','freq','irc'),self.route_lines) # Major job types
                    if jt:
                        self.JobType = jt
                    #print('self.route_lines: ',self.route_lines)
                    #print('jt',jt)
                    self.JobType += self.inroute(('td','nmr','stable'),self.route_lines,add=True) # Additional job types

                # Recognize job type on the fly
                if ' Berny optimization' in s and self.JobType=='sp':
                    self.JobType = 'opt'
                if rc['scan'].search(s):
                    self.JobType = 'scan'

                #
                # ---------------------------------------- Read archive section -------------------------------------------
                #
                if 'l9999.exe' in s and 'Enter' in s:
                    while not '@' in self.l9999:
                        s2 = next(self.FI).strip()
                        if s2=='':
                            continue
                        self.l9999 += s2
                    #print self.l9999

                    la = self.l9999.replace('\n ','').split('\\')

                    if len(la)>5:
                        self.machine_name = la[2]
                        if la[5]:
                            self.basis = la[5]
                        #basis = la[5]
                        #if basis == 'gen':
                            #if basis_FN:
                                #self.basis = ' Basis(?): ' + basis_FN
                            #elif not self.basis:
                                #self.basis = ' Basis: n/a'
                        self.lot = la[4]
                        self.JobType9999 = la[3]
                        if self.JobType != self.JobType9999.lower():
                            self.JobType += "(%s)" % (self.JobType9999.lower())


                #
                # ---------------------------------------- Read simple values ---------------------------------------------
                #

                #Nproc
                if s.find(' Will use up to') == 0:
                    self.n_cores = s.split()[4]


                # time
                if s.find(' Job cpu time:') == 0:
                    s_splitted = s.split()
                    try:
                        n_days = float(s_splitted[3])
                        n_hours = float(s_splitted[5])
                        n_mins = float(s_splitted[7])
                        n_sec = float(s_splitted[9])
                        self.time = n_days*24 + n_hours + n_mins/60 + n_sec/3600
                    except:
                        self.time = '***'


                # n_atoms
                if s.find('NAtoms=') == 1:
                    s_splitted = s.split()
                    self.n_atoms = int(s_splitted[1])

                # n_basis
                if s.find('basis functions') == 7:
                    s_splitted = s.split()
                    self.n_primitives = int(s_splitted[3])

                # Basis
                if s.find('Standard basis:') == 1:
                    self.basis = s.strip().split(':')[1]

                # n_electrons
                if s.find('alpha electrons') == 7:
                    s_splitted = s.split()
                    n_alpha = s_splitted[0]
                    n_beta = s_splitted[3]
                    self.n_electrons = int(n_alpha) + int(n_beta)


                # S^2
                if s.find(' S**2 before annihilation')==0:
                    s_splitted = s.split()
                    before = s_splitted[3][:-1]
                    after = s_splitted[5]
                    self.s2 = before + '/' + after
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addProp('s2',self.s2)

                # CBS-QB3
                if ' CBS-QB3 Enthalpy' in s:
                    self.extra += s

                # Solvent
                if ' Solvent              :' in s:
                    self.solvent = s.split()[2][:-1]
                # Solvation model
                if not self.solv_model and 'Model                :' in s:
                    self.solv_model = s.strip().split()[2]

                # Try to guess basis name from the file name
                if not basis_FN:
                    bas_FN = rc['basis-fn'].match(s)
                    if bas_FN:
                        basis_FN = re.sub('.*\/','',bas_FN.group(1))

                # Read Checkpoint file name
                if not self.chk:
                    chk = rc['chk'].match(s)
                    if chk:
                        self.chk = chk.group(1)

                # Read Symmetry
                if ' Full point group' in s:
                    self.sym = s.split()[3]

                # Read charge_multmetry
                if not self.charge:
                    charge_mult = rc['charge-mult'].match(s)
                    if charge_mult:
                        self.charge = charge_mult.group(1)
                        self.mult   = charge_mult.group(2)

                # Collect WF convergence
                #scf_conv = rc['scf_conv'].match(s)
                #if not scf_conv:
                    #scf_conv = rc['scf_iter'].match(s)
                #if scf_conv:
                    #self.scf_conv.append(scf_conv.group(1))

                # Read Converged HF/DFT Energy
                scf_e = rc['scf done'].match(s)
                if scf_e:
                    if s[14]=='U':
                        self.openShell = True
                    self.scf_e = float(scf_e.group(1))
                    self.scf_done = True
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addProp('e', self.scf_e) # TODO Read in something like self.best_e instead!

                #CI/CC
                if not self.ci_cc_done:
                    if ' CI/CC converged in' in s:
                        self.ci_cc_done = True
                if ' Largest amplitude=' in s:
                    self.amplitude = s.split()[2].replace('D','E')

                # CI/CC Convergence
                ci_cc_conv = rc['ci_cc_conv'].match(s)
                if ci_cc_conv:
                    x  = float(ci_cc_conv.group(1))
                    self.ci_cc_conv.append(x)
                """
                Do we really need to parse post-hf energies?
                # Read post-HF energies
                if ' EUMP2 = ' in s:
                    self.postHF_lot.append('MP2')
                    self.postHF_e.append(s.split()[-1])
                # QCISD(T)
                qcisd_t = rc['qcisd_t'].match(s)
                if qcisd_t:
                    self.postHF_lot.append('QCISD(T)')
                    self.postHF_e.append(qcisd_t.group(1))
                """

                """
                #XXX Probably, we don't need it at all as more reliable topology can be read from NBO output
                # Read in internal coordinates topology
                if '! Name  Definition              Value          Derivative Info.                !' in s:
                    dashes = next(self.FI)
                    s = next(self.FI).strip()
                    while not '----' in s:
                        self.topology.append(s.split()[2])
                        s = next(self.FI).strip()
                """
                #
                # ------------------------------------- NBO Topology -----------------------------------
                #
                if 'N A T U R A L   B O N D   O R B I T A L   A N A L Y S I S' in s:
                    nbo_analysis = NBO()
                    nbo_analysis.FI = self.FI
                    nbo_analysis.parse()
                    nbo_analysis.postprocess()
                    self.topologies.append(nbo_analysis.topology) # Actually, we save a reference, so we can keep using nbo_top
                    for ct in self.all_coords.values():
                        if ct['all']:
                            last_g = ct['all'][-1]
                            last_g.nbo_analysis = nbo_analysis
                            last_g.addAtProp(nbo_analysis.charges)
                            if nbo_analysis.OpenShell:
                                last_g.addAtProp(nbo_analysis.spins)

                #
                # ------------------------------------- NMR chemical shifts -----------------------------------
                #
                if 'SCF GIAO Magnetic shielding tensor (ppm)' in s:
                    nmr = AtomicProps(attr='nmr')
                    s = next(self.FI)
                    while 'Isotropic' in s:
                        c = s.strip().split()[4]
                        nmr.data.append(float(c))
                        next(self.FI)
                        next(self.FI)
                        next(self.FI)
                        next(self.FI)
                        s = next(self.FI)
                    nmr_proton = AtomicProps(attr='nmr_proton')
                    nmr_proton.data = copy.deepcopy(nmr.data)
                    nmr_carbon = AtomicProps(attr='nmr_carbon')
                    nmr_carbon.data = copy.deepcopy(nmr.data)
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addAtProp(nmr)
                            ct['all'][-1].addAtProp(nmr_proton)
                            ct['all'][-1].addAtProp(nmr_carbon)

                #
                # ------------------------------------- Charges -------------------------------------
                #
                for ch in self.chash.keys():
                    if self.chash[ch]['Entry'] in s:
                        pc = AtomicProps(attr=ch)
                        next(self.FI)
                        s = next(self.FI)
                        while not self.chash[ch]['Stop'] in s:
                            c = s.strip().split()[2]
                            pc.data.append(float(c))
                            s = next(self.FI)
                        for ct in self.all_coords.values():
                            if ct['all']:
                                ct['all'][-1].addAtProp(pc)


                #
                # --------------------------------------------- Opt -------------------------------------------------------
                #
                if 'opt' in self.JobType:
                    if '         Item               Value     Threshold  Converged?' in s:
                        self.opt_iter += 1
                        for conv in ('max_force','rms_force','max_displacement','rms_displacement'):
                            s = next(self.FI)
                            x, thr = self.floatize(s[27:35]), float(s[40:48])
                            conv_param = getattr(self,conv)
                            conv_param.append(x-thr)
                            for ct in self.all_coords.values():
                                if ct['all']:
                                    ct['all'][-1].addProp(conv, x-thr)
                    if '    -- Stationary point found.' in s:
                        self.opt_ok = True

                #
                # --------------------------------------------- IRC -------------------------------------------------------
                #
                if 'irc' in self.JobType:
                    # IRC geometry was just collected?

                    if 'Magnitude of analytic gradient =' in s:
                        self.grad = float(s.split('=')[1])

                    if 'Rxn path following direction =' in s:
                        if 'Forward' in s:
                            self.irc_direction = 1
                        if 'Reverse' in s:
                            self.irc_direction = -1

                    """
                    b_optd = ('Optimized point #' in s) and ('Found' in s)
                    b_deltax = '   Delta-x Convergence Met' in s
                    b_flag = 'Setting convergence flag and skipping corrector integration' in s
                    t_irc_point = b_optd or b_deltax or b_flag
                    """

                    """
                    G03:
                    Order of IRC-related parameters:
                        1. Geometry,
                        2. Energy calculated for that geometry
                        3. Optimization convergence test
                    G09:
                    For IRC, there is a geometry entry right before the 'NET REACTION COORDINATE' string,
                    and energy has not been attached to it yet, so we do it manually
                    """
                    if 'NET REACTION COORDINATE UP TO THIS POINT =' in s:
                        x = float(s.split('=')[1])
                        for ct in self.all_coords.values():
                            if ct['all']:
                                girc = ct['all'][-1]
                                girc.addProp('x', x*self.irc_direction)
                                girc.addProp('e', self.scf_e)
                                if '/' in str(self.s2):
                                    girc.addProp('s2', self.s2.split('/')[1].strip())
                                ct['special'].geoms.append(girc)

                    if 'Minimum found on this side of the potential' in s\
                        or 'Begining calculation of the REVERSE path' in s:
                        self.irc_direction *= -1
                        self.irc_both = True

                #
                # -------------------------------------------- Scan -------------------------------------------------------
                #
                if 'scan' in self.JobType:
                    """
                    Order of scan-related parameters:
                        1. Geometry,
                        2. Energy calculated for that geometry
                        3. Optimization convergence test
                    If Stationary point has been found, we already have geometry with energy attached as prop, so we just pick it up
                    """
                    # Memorize scan geometries
                    if '    -- Stationary point found.' in s:
                        for ct in self.all_coords.values():
                            if ct['all']:
                                ct['special'].geoms.append(ct['all'][-1])
                    # Record scanned parameters
                    for param in  self.scan_param_description.values():
                        if ' ! ' in s and param in s:
                            x = float(s.split()[3])
                            for ct in self.all_coords.values():
                                if ct['special']:
                                    ct['special'][-1].addProp(param,x)
                    # Keep extended information about scanned parameter
                    sc = rc['scan param'].match(s)
                    if sc:
                        param, param_full = sc.group(1), sc.group(2)
                        self.scan_param_description[param] = param_full

                #
                # ------------------------------------- Scan or Opt: Frozen parameters -------------------------------------
                #
                if 'scan' in self.JobType or 'opt' in self.JobType:
                    sc = rc['frozen'].match(s)
                    if sc:
                        self.frozen[sc.group(1)] = sc.group(2)

                #
                # ------------------------------------------ Freqs --------------------------------------------------------
                #
                if 'freq' in self.JobType or 'opt' in self.JobType:
                    # T
                    if ' Temperature ' in s:
                        x = float(s.split()[1])
                        self.freq_temp.append(x)
                    # ZPE, H, G
                    if ' Sum of electronic and zero-point Energies=' in s:
                        x = float(s.split()[-1])
                        self.freq_zpe.append(x)
                        next(self.FI)
                        # H
                        Htherm = next(self.FI)
                        x = float(Htherm.split('=')[1])
                        self.freq_ent.append(x)
                        # G
                        Gtherm = next(self.FI)
                        x = float(Gtherm.split('=')[1])
                        self.freq_G.append(x)

                    # Read in vibrational modes
                    if 'Frequencies' in s:
                        for fr in s.split(' '):
                            if '.' in fr:
                                self.freqs.append(float(fr))

                    # Read in imaginary frequencies
                    if      (not t_ifreq_done) \
                       and (self.freqs) \
                       and (self.freqs[0]<0) \
                       and not rc['alnum'].search(s):
                           ifreq = rc['ifreq'].search(s)
                           if ifreq:
                               x, y, z = ifreq.groups()
                               self.vector.append('%s %s %s' % (x,y,z))
                           else:
                                t_ifreq_done = True

                #
                # --------------------------------------- TD --------------------------------------------------------------
                #
                if 'td' in self.JobType:
                    if 'Excitation energies and oscillator strengths' in s:
                        self.uv = {}
                    uv = rc['excited state'].match(s)
                    if uv:
                        self.n_states = uv.group(1)
                        #print self.n_states
                        l,f = float(uv.group(2)),float(uv.group(3))
                        self.uv[l] = f
                        #self.uv[uv.group(1)] = uv.group(2)

                #
                # --------------------------------------- Stable --------------------------------------------------------------
                #
                if 'stable' in self.JobType:
                    if s.find(' The wavefunction has an')==0 and 'instability' in s:
                        self.extra += s

                #
                # ======================================= End of Gau Step ==================================================
                #
                if 'Normal termination of Gaussian' in s:
                    self.OK = True
                    break
        except StopIteration:
            log.error('Unexpected end of Gaussian file')
        # We got here either 
        self.blank = (s == 'BLANK')
        return
Esempio n. 10
0
class Cube(Top):
    """
    Shows 3D-properties from the .cube file

    How to do it:
        1) Specify the file name
        2) Specify the isosurface value to be plot (or give choice via UI elements)
        3) If we have .cube file somewhere else than terse-pics, then make a copy in terse-pics
        .) Read XYZ coordinates from the cube file
        .) Generate HTML code for XYZ coordinates
        4) Generate HTML code to put into b1
        5) In b2, make a checkbox

    In perspective, we might want to plot several surfaces in one JmolApplet (simultaneously or only one at time).

    How are we going to use it?
        [V] U1) Show single .cube file content (here, we use terse as a .cube file parser)
        U2) Parse .fchk file: extract selected/all properties and show them. In this case, we will
            need to load JmolApplet and XYZ file once, and use UI elements to choose properties of interest and isosurface values
        U3) Show NBO interactions. We will need text parser to find orbital interactions (from Gaussian output), and show them
            by pairs of orbitals (donor/acceptor).
        U4) Show TD-DFT transitions. If we use natural transition orbitals (BTW what are they?), then we probably would have
            to show list of orbitals. If we parse excited state compositions from Gaussian output, then we again would have
            list of pairs of orbitals (for each excited state, dominant transition should be shown in the form of from-->to orbitals).

    How are we going to realize it?
        1) Eventually, for each property, we will need to plot an isosurface, so Cube should have a function which returns
            a Jmol script line that loads isosurface in the existing Jmol window
        2) .webdata function should solve problem U1
        3) Problem U2 should be solved via FchkGaussian class (it would be cool to parse FchkGaussin, as it has a lot of
            information about the calculations, so we can show geometries, freqs, charges, and other properties as well
            as Electrostatic potentials and other space-distributed properties
        4) For problem U3, special class should be created, which will be activated by command-line options
            (because only specific Gaussian input files can generate .fchk with NBO orbitals; and both .chk and .log files should be provided)
        5) To solve U4, we need both .log and .chk files, so it should be a special kind of input for terse.py.
            Probably, there is no other special reasons for not to show these things by default.
        *) What we can do: add a global key that allows to look up for .chk file (from Gaussian log file or just by assuming that 
            chk file has the same basename as the log file)

    Notes:
        1) ESP should be treated in a special way, as it needs density cube and ESP cube
        2) What about showing ESP critical points on the ESP isodensity surface? (though, is not it too complicated and out of scope of this program?)
        3) It's trivial to combine cubes! (multiply,divide,sum,substract and so on)

    OK, so what's the plan?
        [V] 1) Cube should be just a helper class with few functions:
            [V] ) extract molecular XYZ;
            [V] ) generate scipt for Jmol to show isosurface with a given isovalue
            [V] ) 'parse' single .cube files (like we do it with .xyz and Gau);
        So, I can start with implementing this functionality
        2) Solve U2. I will plan it a little later

    """
    def __init__(self, name='', colors=''):
        self.geom = Geom()  # geom extracted from the cube
        self.wpcube = ''  # web path to the .cube
        self.name = name
        self.colors = colors
        self.isotype = ''
        self.isovalue = '0.03'

    def parse(self):
        self.extractXYZ()

        if not self.wpcube:  # A trick: if self.wpcube is given, we don't copy file
            rp = self.settings.real_path('.cube')
            self.wpcube = self.settings.web_path('.cube')
            shutil.copy(self.file, rp)
            self.file = rp
        """
        Normally, this kind of things are defined in webdata,
        but we need to do it here, because it might be redefined
        by make_JVXL; and it would be uglier to put make_JVXL
        into webdata
        """
        we = self.settings.Engine3D()
        if self.settings.useJVXL:
            self.s_script = we.jmol_isosurface(webpath=self.file,
                                               isovalue=self.isovalue,
                                               surftype=self.isotype,
                                               use_quotes=True,
                                               name=self.name,
                                               colors=self.colors)

            self.J = self.make_JVXL()
            if not self.settings.save_cube:
                os.remove(self.file)
        else:
            self.s_script = we.jmol_isosurface(webpath=self.wpcube,
                                               name=self.name,
                                               colors=self.colors)

    def extractXYZ(self):
        Bohr = 0.52917721

        try:
            FI = open(self.file)
            log.debug('%s was opened for reading' % (self.file))
        except:
            log.error('Cannot open %s for reading' % (self.file))

        comment1 = FI.readline()
        comment2 = FI.readline()

        line3 = FI.readline().split()
        natoms = abs(int(line3[0]))

        V1 = FI.readline()
        V2 = FI.readline()
        V3 = FI.readline()

        for _ in range(natoms):
            s = FI.readline().strip().split()
            elN, xyz = s[0], list(map(lambda x: str(float(x) * Bohr), s[2:]))
            self.geom.coord.append('%s    %s  %s  %s\n' % tuple([elN] + xyz))

        FI.close()
        log.debug('%s parsed successfully' % (self.file))
        return

    def webdata(self):
        """
        Makes HTML row.
        return: b1,b2
        """

        we = self.settings.Engine3D()
        wp = self.geom.write(fname='.xyz')
        b1 = we.JMolApplet(webpath=wp)

        iso_on = self.s_script
        iso_off = 'isosurface off'
        b2 = we.html_button(iso_on, label='Isosurface On') + we.html_button(
            iso_off, label='Off')

        log.debug('webdata generated successfully')
        return b1, b2

    def make_JVXL(self):
        """
        * [V] It is to be called by parser
        * [V] At the moment of call, Jmol script line has to be known
        * make_JVXL should call external Jmol
        * make_JVXL will return updated Jmol script command
        """
        J = JVXL()
        J.file = re.sub('cube$', 'jvxl', self.file)
        J.wp = re.sub('cube$', 'jvxl', self.wpcube)
        #J.file = self.settings.real_path('.jvxl')
        #J.wp =  self.settings.web_path('.jvxl')

        #subprocess.call(['awk','-i','inplace','{if (NR==3) {print substr($0,1,41)} else {print}}\'",fcube])
        log.debug('Trimming line 3 in %s:' % (self.file))
        os.system(
            'awk -i inplace \'{if (NR==3) {print substr($0,1,41)} else {print}}\' '
            + self.file
        )  # Hack to make the new format of .cube file compatible with Jmol
        #os.system('head -n3 '+self.file)

        s = "%s; write jvxl %s" % (self.s_script, J.file)
        execute_Jmol(self.settings.JmolAbsPath, s)
        we = self.settings.Engine3D()
        J.s_script = we.jmol_jvxl(webpath=J.wp, name=self.name)
        self.s_script = J.s_script
        return J
 def initObj(self):
     self.obj = Geom(np.empty((0,4)), [], [], [0,0,0])
Esempio n. 12
0
    def parse(self):
        """
        Actual parsing happens here
        """
        t_ifreq_done = False
        basis_FN = ''
        rc = self.rc

        s = 'BLANK'  # It got to be initialized!
        try:
            while True:
                next(self.FI)
                s = self.FI.s.rstrip()

                #
                # Try to save some time by skipping parsing of large noninformative blocks of output
                #
                # Does not work for AM1 calcs
                """
                # Skip parsing of SCF iterations
                if s.find(' Cycle')==0:
                    while not s == '':
                        s = next(self.FI).rstrip()
                """
                # Skip parsing of distance matrices
                if s.find('Distance matrix (angstroms):') == 20:
                    n = len(self.all_coords[coord_type]['all'][-1])
                    #print('n=',n)
                    a1 = n % 5
                    an = n
                    num = int((an - a1) / 5) + 1

                    n_lines_to_skip = num * (a1 + an) / 2
                    if a1 == 0:
                        num -= 1
                    n_lines_to_skip += num * (1 + num) / 2
                    self.FI.skip_n(int(n_lines_to_skip))
                    s = self.FI.s.rstrip()

                #
                # ---------------------------------------- Read in cartesian coordinates ----------------------------------
                #
                # Have we found coords?
                enter_coord = False
                if ' orientation:' in s:
                    coord_type = s.split()[0]
                    enter_coord = True
                if s.find('                Cartesian Coordinates (Ang):') == 0:
                    coord_type = 'Cartesian Coordinates (Ang)'
                    enter_coord = True
                # If yes, then read them
                if enter_coord:
                    # Positioning
                    dashes1 = next(self.FI)
                    title1 = next(self.FI)
                    title2 = next(self.FI)
                    dashes2 = next(self.FI)
                    s = next(self.FI)
                    # Read in coordinates
                    geom = Geom()
                    atnames = []
                    while not '-------' in s:
                        xyz = s.strip().split()
                        try:
                            ati, x, y, z = xyz[1], xyz[-3], xyz[-2], xyz[-1]
                        except:
                            log.warning('Error reading coordinates:\n%s' % (s))
                            break
                        atn = ChemicalInfo.at_name[int(ati)]
                        atnames.append(atn)
                        geom.coord.append('%s %s %s %s' % (atn, x, y, z))
                        s = next(self.FI)
                    # Add found coordinate to output
                    pc = AtomicProps(attr='atnames', data=atnames)
                    geom.addAtProp(
                        pc, visible=False
                    )  # We hide it, because there is no use to show atomic names for each geometry using checkboxes

                    if not coord_type in self.all_coords:
                        self.all_coords[coord_type] = {
                            'all': ListGeoms(),
                            'special': ListGeoms()
                        }
                    self.all_coords[coord_type]['all'].geoms.append(geom)

                #
                # ------------------------------------------- Route lines -------------------------------------------------
                #
                if s.find(' #') == 0:
                    # Read all route lines
                    s2 = s
                    while not '-----' in s2:
                        self.route_lines += ' ' + s2[1:]
                        s2 = next(self.FI).rstrip()
                    self.route_lines = self.route_lines.lower()
                    self.iop = rc['iop'].findall(self.route_lines)
                    self.route_lines = re.sub(
                        'iop\(.*?\)', '', self.route_lines
                    )  # Quick and dirty: get rid of slash symbols

                    # Get Level of Theory
                    # Look for standard notation: Method/Basis
                    lot = rc['/'].search(self.route_lines)
                    # print self.route_lines
                    if lot:
                        self.lot, self.basis = lot.group(1).split('/')
                        if self.basis == 'gen' and basis_FN:  # Read basis from external file
                            self.basis = basis_FN
                    else:
                        # Look for method and basis separately using predefined lists of standard methods and bases
                        lt = self.inroute(self.lot_nobasis, self.route_lines)
                        if lt:
                            self.lot = lt
                        bs = self.inroute(self.def_basis, self.route_lines)
                        if bs:
                            self.basis = bs

                    # Extract %HF in non-standard functionals
                    for iop in self.iop:
                        if '3/76' in iop:
                            encrypted_hf = iop.split('=')[1]
                            str_hf = encrypted_hf[-5:]
                            num_hf = float(str_hf[:3] + '.' + str_hf[3:])
                            self.lot_suffix += '(%.2f %%HF)' % (num_hf)

                    # Read solvent info
                    if 'scrf' in self.route_lines:
                        solvent = rc['scrf-solv'].search(self.route_lines)
                        if solvent:
                            self.solvent = solvent.group(1)

                    # Get job type from the route line
                    self.route_lines = re.sub(
                        '\(.*?\)', '', self.route_lines
                    )  # Quick and dirty: get rid of parentheses to get a string with only top level commands
                    self.route_lines = re.sub(
                        '=\S*', '', self.route_lines
                    )  # Quick and dirty: get rid of =... to get a string with only top level commands
                    jt = self.inroute(('opt', 'freq', 'irc'),
                                      self.route_lines)  # Major job types
                    if jt:
                        self.JobType = jt
                    #print('self.route_lines: ',self.route_lines)
                    #print('jt',jt)
                    self.JobType += self.inroute(
                        ('td', 'nmr', 'stable'), self.route_lines,
                        add=True)  # Additional job types

                # Recognize job type on the fly
                if ' Berny optimization' in s and self.JobType == 'sp':
                    self.JobType = 'opt'
                if rc['scan'].search(s):
                    self.JobType = 'scan'

                #
                # ---------------------------------------- Read archive section -------------------------------------------
                #
                if 'l9999.exe' in s and 'Enter' in s:
                    while not '@' in self.l9999:
                        s2 = next(self.FI).strip()
                        if s2 == '':
                            continue
                        self.l9999 += s2
                    #print self.l9999

                    la = self.l9999.replace('\n ', '').split('\\')

                    if len(la) > 5:
                        self.machine_name = la[2]
                        if la[5]:
                            self.basis = la[5]
                        #basis = la[5]
                        #if basis == 'gen':
                        #if basis_FN:
                        #self.basis = ' Basis(?): ' + basis_FN
                        #elif not self.basis:
                        #self.basis = ' Basis: n/a'
                        self.lot = la[4]
                        self.JobType9999 = la[3]
                        if self.JobType != self.JobType9999.lower():
                            self.JobType += "(%s)" % (self.JobType9999.lower())

                #
                # ---------------------------------------- Read simple values ---------------------------------------------
                #

                #Nproc
                if s.find(' Will use up to') == 0:
                    self.n_cores = s.split()[4]

                # time
                if s.find(' Job cpu time:') == 0:
                    s_splitted = s.split()
                    try:
                        n_days = float(s_splitted[3])
                        n_hours = float(s_splitted[5])
                        n_mins = float(s_splitted[7])
                        n_sec = float(s_splitted[9])
                        self.time = n_days * 24 + n_hours + n_mins / 60 + n_sec / 3600
                    except:
                        self.time = '***'

                # n_atoms
                if s.find('NAtoms=') == 1:
                    s_splitted = s.split()
                    self.n_atoms = int(s_splitted[1])

                # n_basis
                if s.find('basis functions') == 7:
                    s_splitted = s.split()
                    self.n_primitives = int(s_splitted[3])

                # Basis
                if s.find('Standard basis:') == 1:
                    self.basis = s.strip().split(':')[1]

                # n_electrons
                if s.find('alpha electrons') == 7:
                    s_splitted = s.split()
                    n_alpha = s_splitted[0]
                    n_beta = s_splitted[3]
                    self.n_electrons = int(n_alpha) + int(n_beta)

                # S^2
                if s.find(' S**2 before annihilation') == 0:
                    s_splitted = s.split()
                    before = s_splitted[3][:-1]
                    after = s_splitted[5]
                    self.s2 = before + '/' + after
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addProp('s2', self.s2)

                # CBS-QB3
                if ' CBS-QB3 Enthalpy' in s:
                    self.extra += s

                # Solvent
                if ' Solvent              :' in s:
                    self.solvent = s.split()[2][:-1]
                # Solvation model
                if not self.solv_model and 'Model                :' in s:
                    self.solv_model = s.strip().split()[2]

                # Try to guess basis name from the file name
                if not basis_FN:
                    bas_FN = rc['basis-fn'].match(s)
                    if bas_FN:
                        basis_FN = re.sub('.*\/', '', bas_FN.group(1))

                # Read Checkpoint file name
                if not self.chk:
                    chk = rc['chk'].match(s)
                    if chk:
                        self.chk = chk.group(1)

                # Read Symmetry
                if ' Full point group' in s:
                    self.sym = s.split()[3]

                # Read charge_multmetry
                if not self.charge:
                    charge_mult = rc['charge-mult'].match(s)
                    if charge_mult:
                        self.charge = charge_mult.group(1)
                        self.mult = charge_mult.group(2)

                # Collect WF convergence
                #scf_conv = rc['scf_conv'].match(s)
                #if not scf_conv:
                #scf_conv = rc['scf_iter'].match(s)
                #if scf_conv:
                #self.scf_conv.append(scf_conv.group(1))

                # Read Converged HF/DFT Energy
                scf_e = rc['scf done'].match(s)
                if scf_e:
                    if s[14] == 'U':
                        self.openShell = True
                    self.scf_e = float(scf_e.group(1))
                    self.scf_done = True
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addProp(
                                'e', self.scf_e
                            )  # TODO Read in something like self.best_e instead!

                #CI/CC
                if not self.ci_cc_done:
                    if ' CI/CC converged in' in s:
                        self.ci_cc_done = True
                if ' Largest amplitude=' in s:
                    self.amplitude = s.split()[2].replace('D', 'E')

                # CI/CC Convergence
                ci_cc_conv = rc['ci_cc_conv'].match(s)
                if ci_cc_conv:
                    x = float(ci_cc_conv.group(1))
                    self.ci_cc_conv.append(x)
                """
                Do we really need to parse post-hf energies?
                # Read post-HF energies
                if ' EUMP2 = ' in s:
                    self.postHF_lot.append('MP2')
                    self.postHF_e.append(s.split()[-1])
                # QCISD(T)
                qcisd_t = rc['qcisd_t'].match(s)
                if qcisd_t:
                    self.postHF_lot.append('QCISD(T)')
                    self.postHF_e.append(qcisd_t.group(1))
                """
                """
                #XXX Probably, we don't need it at all as more reliable topology can be read from NBO output
                # Read in internal coordinates topology
                if '! Name  Definition              Value          Derivative Info.                !' in s:
                    dashes = next(self.FI)
                    s = next(self.FI).strip()
                    while not '----' in s:
                        self.topology.append(s.split()[2])
                        s = next(self.FI).strip()
                """
                #
                # ------------------------------------- NBO Topology -----------------------------------
                #
                if 'N A T U R A L   B O N D   O R B I T A L   A N A L Y S I S' in s:
                    nbo_analysis = NBO()
                    nbo_analysis.FI = self.FI
                    nbo_analysis.parse()
                    nbo_analysis.postprocess()
                    self.topologies.append(
                        nbo_analysis.topology
                    )  # Actually, we save a reference, so we can keep using nbo_top
                    for ct in self.all_coords.values():
                        if ct['all']:
                            last_g = ct['all'][-1]
                            last_g.nbo_analysis = nbo_analysis
                            last_g.addAtProp(nbo_analysis.charges)
                            if nbo_analysis.OpenShell:
                                last_g.addAtProp(nbo_analysis.spins)

                #
                # ------------------------------------- NMR chemical shifts -----------------------------------
                #
                if 'SCF GIAO Magnetic shielding tensor (ppm)' in s:
                    nmr = AtomicProps(attr='nmr')
                    s = next(self.FI)
                    while 'Isotropic' in s:
                        c = s.strip().split()[4]
                        nmr.data.append(float(c))
                        next(self.FI)
                        next(self.FI)
                        next(self.FI)
                        next(self.FI)
                        s = next(self.FI)
                    nmr_proton = AtomicProps(attr='nmr_proton')
                    nmr_proton.data = copy.deepcopy(nmr.data)
                    nmr_carbon = AtomicProps(attr='nmr_carbon')
                    nmr_carbon.data = copy.deepcopy(nmr.data)
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['all'][-1].addAtProp(nmr)
                            ct['all'][-1].addAtProp(nmr_proton)
                            ct['all'][-1].addAtProp(nmr_carbon)

                #
                # ------------------------------------- Charges -------------------------------------
                #
                for ch in self.chash.keys():
                    if self.chash[ch]['Entry'] in s:
                        pc = AtomicProps(attr=ch)
                        next(self.FI)
                        s = next(self.FI)
                        while not self.chash[ch]['Stop'] in s:
                            c = s.strip().split()[2]
                            pc.data.append(float(c))
                            s = next(self.FI)
                        for ct in self.all_coords.values():
                            if ct['all']:
                                ct['all'][-1].addAtProp(pc)

                #
                # --------------------------------------------- Opt -------------------------------------------------------
                #
                if 'opt' in self.JobType:
                    if '         Item               Value     Threshold  Converged?' in s:
                        self.opt_iter += 1
                        for conv in ('max_force', 'rms_force',
                                     'max_displacement', 'rms_displacement'):
                            s = next(self.FI)
                            x, thr = self.floatize(s[27:35]), float(s[40:48])
                            conv_param = getattr(self, conv)
                            conv_param.append(x - thr)
                            for ct in self.all_coords.values():
                                if ct['all']:
                                    ct['all'][-1].addProp(conv, x - thr)
                    if '    -- Stationary point found.' in s:
                        self.opt_ok = True

                #
                # --------------------------------------------- IRC -------------------------------------------------------
                #
                if 'irc' in self.JobType:
                    # IRC geometry was just collected?

                    if 'Magnitude of analytic gradient =' in s:
                        self.grad = float(s.split('=')[1])

                    if 'Rxn path following direction =' in s:
                        if 'Forward' in s:
                            self.irc_direction = 1
                        if 'Reverse' in s:
                            self.irc_direction = -1
                    """
                    b_optd = ('Optimized point #' in s) and ('Found' in s)
                    b_deltax = '   Delta-x Convergence Met' in s
                    b_flag = 'Setting convergence flag and skipping corrector integration' in s
                    t_irc_point = b_optd or b_deltax or b_flag
                    """
                    """
                    G03:
                    Order of IRC-related parameters:
                        1. Geometry,
                        2. Energy calculated for that geometry
                        3. Optimization convergence test
                    G09:
                    For IRC, there is a geometry entry right before the 'NET REACTION COORDINATE' string,
                    and energy has not been attached to it yet, so we do it manually
                    """
                    if 'NET REACTION COORDINATE UP TO THIS POINT =' in s:
                        x = float(s.split('=')[1])
                        for ct in self.all_coords.values():
                            if ct['all']:
                                girc = ct['all'][-1]
                                girc.addProp('x', x * self.irc_direction)
                                girc.addProp('e', self.scf_e)
                                if '/' in str(self.s2):
                                    girc.addProp('s2',
                                                 self.s2.split('/')[1].strip())
                                ct['special'].geoms.append(girc)

                    if 'Minimum found on this side of the potential' in s\
                        or 'Begining calculation of the REVERSE path' in s:
                        self.irc_direction *= -1
                        self.irc_both = True

                #
                # -------------------------------------------- Scan -------------------------------------------------------
                #
                if 'scan' in self.JobType:
                    """
                    Order of scan-related parameters:
                        1. Geometry,
                        2. Energy calculated for that geometry
                        3. Optimization convergence test
                    If Stationary point has been found, we already have geometry with energy attached as prop, so we just pick it up
                    """
                    # Memorize scan geometries
                    if '    -- Stationary point found.' in s:
                        for ct in self.all_coords.values():
                            if ct['all']:
                                ct['special'].geoms.append(ct['all'][-1])
                    # Record scanned parameters
                    for param in self.scan_param_description.values():
                        if ' ! ' in s and param in s:
                            x = float(s.split()[3])
                            for ct in self.all_coords.values():
                                if ct['special']:
                                    ct['special'][-1].addProp(param, x)
                    # Keep extended information about scanned parameter
                    sc = rc['scan param'].match(s)
                    if sc:
                        param, param_full = sc.group(1), sc.group(2)
                        self.scan_param_description[param] = param_full

                #
                # ------------------------------------- Scan or Opt: Frozen parameters -------------------------------------
                #
                if 'scan' in self.JobType or 'opt' in self.JobType:
                    sc = rc['frozen'].match(s)
                    if sc:
                        self.frozen[sc.group(1)] = sc.group(2)

                #
                # ------------------------------------------ Freqs --------------------------------------------------------
                #
                if 'freq' in self.JobType or 'opt' in self.JobType:
                    # T
                    if ' Temperature ' in s:
                        x = float(s.split()[1])
                        self.freq_temp.append(x)
                    # ZPE, H, G
                    if ' Sum of electronic and zero-point Energies=' in s:
                        x = float(s.split()[-1])
                        self.freq_zpe.append(x)
                        next(self.FI)
                        # H
                        Htherm = next(self.FI)
                        x = float(Htherm.split('=')[1])
                        self.freq_ent.append(x)
                        # G
                        Gtherm = next(self.FI)
                        x = float(Gtherm.split('=')[1])
                        self.freq_G.append(x)

                    # Read in vibrational modes
                    if 'Frequencies' in s:
                        for fr in s.split(' '):
                            if '.' in fr:
                                self.freqs.append(float(fr))

                    # Read in imaginary frequencies
                    if      (not t_ifreq_done) \
                       and (self.freqs) \
                       and (self.freqs[0]<0) \
                       and not rc['alnum'].search(s):
                        ifreq = rc['ifreq'].search(s)
                        if ifreq:
                            x, y, z = ifreq.groups()
                            self.vector.append('%s %s %s' % (x, y, z))
                        else:
                            t_ifreq_done = True

                #
                # --------------------------------------- TD --------------------------------------------------------------
                #
                if 'td' in self.JobType:
                    if 'Excitation energies and oscillator strengths' in s:
                        self.uv = {}
                    uv = rc['excited state'].match(s)
                    if uv:
                        self.n_states = uv.group(1)
                        #print self.n_states
                        l, f = float(uv.group(2)), float(uv.group(3))
                        self.uv[l] = f
                        #self.uv[uv.group(1)] = uv.group(2)

                #
                # --------------------------------------- Stable --------------------------------------------------------------
                #
                if 'stable' in self.JobType:
                    if s.find(' The wavefunction has an'
                              ) == 0 and 'instability' in s:
                        self.extra += s

                #
                # ======================================= End of Gau Step ==================================================
                #
                if 'Normal termination of Gaussian' in s:
                    self.OK = True
                    break
        except StopIteration:
            log.error('Unexpected end of Gaussian file')
        # We got here either
        self.blank = (s == 'BLANK')
        return
    def parse(self):
        """
        Actual parsing happens here
        """

        self.all_coords = {}
        """
        Occur only in the first entrance, so we just safely skip
        these two lines right after opening the file
        s01                          = self.FI.nstrip()
        s02                          = self.FI.nstrip()
        """
        try:
            s03 = self.FI.nstrip()
        except:
            self.blanc = True
            return
        s04_compnode = self.FI.nstrip()
        s05_type = self.FI.nstrip()
        s06_lot = self.FI.nstrip()
        s07_basis = self.FI.nstrip()
        s08_stochiometry_charge_mult = self.FI.nstrip()
        s09_user = self.FI.nstrip()
        s10_date = self.FI.nstrip()
        s11 = self.FI.nstrip()
        s12 = self.FI.nstrip()
        s13_route = self.FI.nstrip()
        s14 = self.FI.nstrip()
        s15_comment = self.FI.nstrip()
        s16 = self.FI.nstrip()
        s17_charge_mult = self.FI.nstrip()
        s18_geom = self.FI.getBlock(StartOffset=1)
        s_ag_variables = self.FI.getBlock(StartOffset=1)  # after geometry

        self.OK = True
        # Read in values in the header part
        self.JobType = s05_type.lower()
        self.lot = s06_lot
        self.basis = s07_basis
        self.extra = s13_route
        self.comments = s15_comment
        self.charge, self.mult = s17_charge_mult.split(',')

        if 'scrf' in s13_route.lower():
            solvent = re.search('scrf.*solvent\s*=\s*(\w+)', s13_route.lower())
            if solvent:
                self.solvent = solvent.group(1)
        # Read in geom
        geom = Geom()
        atnames = []
        for s in s18_geom:
            xyz = s.strip().split(',')
            try:
                atn, x, y, z = xyz[0], xyz[-3], xyz[-2], xyz[-1]
            except:
                log.warning('Error reading coordinates:\n%s' % (s))
                break
            atnames.append(atn)
            geom.coord.append('%s %s %s %s' % (atn, x, y, z))
        pc = AtomicProps(attr='atnames', data=atnames)
        geom.addAtProp(pc, visible=False)
        self.geoms.geoms.append(geom)

        # Read in variables
        vrs = {}
        for s in s_ag_variables:
            k, v = s.split('=')
            vrs[k] = v

        if 'S2A' in vrs:
            self.s2 = '%s / %s' % (vrs['S2'], vrs['S2A'])

        if 'HF' in vrs:
            self.scf_e = float(vrs['HF'])

        if 'NImag' in vrs:
            self.nimag = float(vrs['NImag'])
            if self.nimag > 0:
                self.extra += 'Imaginary freqs found!'

        try:
            self.FI.skip_until('@1')
        except:
            pass
        return
Esempio n. 14
0
    def parse(self):
        """
        Actual parsing happens here
        """

        rc = {
                '/' : re.compile('(\S*\/\S+)'),
                'iop' : re.compile('iop\((.*?)\)'),
                'scrf-solv': re.compile('scrf.*solvent\s*=\s*(\w+)',re.IGNORECASE),
                's2' : re.compile(' S\*\*2 before annihilation\s+(\S+),.*?\s+(\S+)$'),
                'nbo-bond' : re.compile('\) BD \(.*\s+(\S+)\s*-\s*\S+\s+(\S+)'),
                'basis-fn' : re.compile('^ AtFile\(1\):\s+(.*?).gbs'),
                'chk' : re.compile('^ %%chk\s*=\s*(\S+)'),
                'charge-mult' : re.compile('^ Charge =\s+(\S+)\s+Multiplicity =\s+(\S+)'),
                'scf done' : re.compile('^ SCF Done.*?=\s+(\S+)'),
                'qcisd_t' : re.compile('^ QCISD\(T\)=\s*(\S+)'),
                'scf_conv' : re.compile('^ E=\s*(\S+)'),
                'scf_iter' : re.compile('^ Iteration\s+\S+\s+EE=\s*(\S+)'),
                'ci_cc_conv' : re.compile('^ DE\(Corr\)=\s*\S+\s*E\(CORR\)=\s*(\S+)'),
                'xyz' : re.compile('^\s+\S+\s+(\S+).*\s+(\S+)\s+(\S+)\s+(\S+)\s*$'),
                'scan param' : re.compile('^ !\s+(\S+)\s+(\S+)\s+(\S+)\s+Scan\s+!$'),
                'frozen' : re.compile('^ !\s+(\S+)\s+(\S+)\s+\S+\s+frozen.*!$',re.IGNORECASE),
                'alnum' : re.compile('[a-zA-Z]'),
                'ifreq' : re.compile('\d+\s+\d+\s+(\S+)\s+(\S+)\s+(\S+)'),
                'excited state' : re.compile('^ Excited State\s+(.*?):.*?\s+(\S+)\s*nm  f=\s*(\S+)'),
                'scan' : re.compile('Scan\s+!$')
        }
        self.chash = {}
        self.chash['NPA']      = {'Entry': 'XXX-XXX', 'Stop': 'XXX-XXX'}
        self.chash['NPA_spin'] = {'Entry': 'XXX-XXX', 'Stop': 'XXX-XXX'}
        self.chash['APT']      = {'Entry' : 'APT atomic charges:',                                                   'Stop' : 'Sum of APT' }
        self.chash['Mulliken'] = {'Entry' : 'Mulliken atomic charges:',                                              'Stop' : 'Sum of Mulliken' }
        lot_nobasis = (
                'cbs-qb3','cbs-4m','cbs-apno',
                'g1', 'g2', 'g2mp2', 'g3', 'g3mp2', 'g3b3', 'g3mp2b3', 'g4', 'g4mp2', 'g3mp2b3',
                'w1u', 'w1bd', 'w1ro',
                'b1b95', 'b1lyp', 'b3lyp', 'b3p86', 'b3pw91', 'b95', 'b971', 'b972', 'b97d', 'b98', 'bhandh', 'bhandhlyp', 'bmk', 'brc', 'brx', 'cam-b3lyp', 'g96', 'hcth', 'hcth147', 'hcth407', 'hcth93', 'hfb', 'hfs', 'hse2pbe', 'hseh1pbe', 'hsehpbe', 'kcis', 'lc-wpbe', 'lyp', 'm06', 'm062x', 'm06hf', 'm06l', 'o3lyp', 'p86', 'pbe', 'pbe', 'pbe1pbe', 'pbeh', 'pbeh1pbe', 'pkzb', 'pkzb', 'pw91', 'pw91', 'tpss', 'tpssh', 'v5lyp', 'vp86', 'vsxc', 'vwn', 'vwn5', 'x3lyp', 'xa', 'xalpha', 'mpw', 'mpw1lyp', 'mpw1pbe', 'mpw1pw91', 'mpw3pbe', 'thcth', 'thcthhyb', 'wb97', 'wb97x', 'wb97xd', 'wpbeh',
                'mp2', 'mp3', 'mp4', 'mp5', 'b2plyp', 'mpw2plyp',
                'ccd','ccsd','ccsd(t)','cid','cisd','qcisd(t)','sac-ci',
                'am1','pm3','pm6','cndo','dftba','dftb','zindo','indo',
                'amber','dreiding','uff',
                'rhf','uhf','hf','casscf','gvb',
        )
        def_basis = (
            '3-21g', '6-21g', '4-31g', '6-31g', '6-311g',
            'd95v', 'd95', 'shc',
            'cep-4g', 'cep-31g', 'cep-121g',
            'lanl2mb', 'lanl2dz', 'sdd', 'sddall',
            'cc-pvdz', 'cc-pvtz', 'cc-pvqz', 'cc-pv5z', 'cc-pv6z',
            'svp', 'sv', 'tzvp', 'tzv', 'qzvp',
            'midix', 'epr-ii', 'epr-iii', 'ugbs', 'mtsmall',
            'dgdzvp', 'dgdzvp2', 'dgtzvp', 'cbsb7',
            'gen','chkbasis',
        )
        self.irc_direction, self.irc_both = 1, False
        self.all_coords = {}
        t_ifreq_done = False
        basis_FN = ''

        # ------- Helper functions --------
        def inroute(lst,s,add=False):
            result = ''
            for si in lst:
                for sj in s.split():
                    if si.lower()==sj.lower() or ('u'+si.lower())==sj.lower() or ('r'+si.lower())==sj.lower():
                        if add:
                            result += ' '+si
                        else:
                            return si
            return result
        #
        def floatize(x):
            if '****' in x:
                return 10.
            return float(x)
        # //----- Helper functions --------


        s = 'BLANC' # It got to be initialized!
        for s in self.FI:
            s = s.rstrip()

            #
            # Try to save some time by skipping parsing of large noninformative blocks of output
            #
            try:
                # Skip parsing of SCF iterations
                if s.find(' Cycle')==0:
                    while not s == '':
                        s = self.FI.next().rstrip()
            except:
                log.warning('Unexpected EOF in the SCF iterations')
                break
            try:
                # Skip parsing of distance matrices
                if s.find('Distance matrix (angstroms):')==20:
                    n = len(self.all_coords[coord_type]['all'][-1])
                    m = int(math.ceil(n / 5.))
                    k = n % 5
                    n_lines_to_skip = m*(n + k + 2)/2
                    for i in range(n_lines_to_skip):
                        s = self.FI.next()
                    s = s.rstrip()
            except:
                log.warning('Unexpected EOF in the matrix of distances')
                break

            #
            # ---------------------------------------- Read in cartesian coordinates ----------------------------------
            #
            # Have we found coords?
            enter_coord = False
            if ' orientation:' in s:
                coord_type = s.split()[0]
                enter_coord = True
            if s.find('                Cartesian Coordinates (Ang):')==0:
                coord_type = 'Cartesian Coordinates (Ang)'
                enter_coord = True
            # If yes, then read them
            if enter_coord:
                try:
                    # Positioning
                    dashes1 = self.FI.next()
                    title1  = self.FI.next()
                    title2  = self.FI.next()
                    dashes2 = self.FI.next()
                    s = self.FI.next()
                    # Read in coordinates
                    geom = Geom()
                    atnames = []
                    while not '-------' in s:
                        xyz = s.strip().split()
                        try:
                            ati, x,y,z = xyz[1], xyz[-3],xyz[-2],xyz[-1]
                        except:
                            log.warning('Error reading coordinates:\n%s' % (s))
                            break
                        atn = ChemicalInfo.at_name[int(ati)]
                        atnames.append(atn)
                        geom.coord.append('%s %s %s %s' % (atn,x,y,z))
                        s = self.FI.next()
                    # Add found coordinate to output
                    pc = AtomicProps(attr='atnames',data=atnames)
                    geom.addAtProp(pc,visible=False) # We hide it, because there is no use to show atomic names for each geometry using checkboxes

                    if not coord_type in self.all_coords:
                        self.all_coords[coord_type] = {'all':ListGeoms(),'special':ListGeoms()}
                    self.all_coords[coord_type]['all'].geoms.append(geom)
                except StopIteration:
                    log.warning('EOF while reading geometry')
                    break

            #
            # ------------------------------------------- Route lines -------------------------------------------------
            #
            if s.find(' #')==0:
                # Read all route lines
                s2 = s
                while not '-----' in s2:
                    self.route_lines += s2[1:]
                    try:
                        s2 = self.FI.next().rstrip()
                    except StopIteration:
                        log.warning('EOF in the route section')
                        break
                self.route_lines = self.route_lines.lower()
                self.iop = rc['iop'].findall(self.route_lines)
                self.route_lines = re.sub('iop\(.*?\)','',self.route_lines) # Quick and dirty: get rid of slash symbols

                # Get Level of Theory
                # Look for standard notation: Method/Basis
                lot = rc['/'].search(self.route_lines)
                # print self.route_lines
                if lot:
                    self.lot, self.basis = lot.group(1).split('/')
                    if self.basis == 'gen' and basis_FN: # Read basis from external file
                        self.basis = basis_FN
                else:
                    # Look for method and basis separately using predefined lists of standard methods and bases
                    lt = inroute(lot_nobasis,self.route_lines)
                    if lt:
                        self.lot = lt
                    bs = inroute(def_basis,self.route_lines)
                    if bs:
                        self.basis = bs

                # Extract %HF in non-standard functionals
                for iop in self.iop:
                    if '3/76' in iop:
                        encrypted_hf = iop.split('=')[1]
                        str_hf = encrypted_hf[-5:]
                        num_hf = float(str_hf[:3]+'.'+str_hf[3:])
                        self.lot_suffix += '(%.2f %%HF)' %(num_hf)

                # Read solvent info
                if 'scrf' in self.route_lines:
                    solvent = rc['scrf-solv'].search(self.route_lines)
                    if solvent:
                        self.solvent = solvent.group(1)

                # Get job type from the route line
                self.route_lines = re.sub('\(.*?\)','',self.route_lines) # Quick and dirty: get rid of parentheses to get a string with only top level commands
                self.route_lines = re.sub('=\S*','',self.route_lines) # Quick and dirty: get rid of =... to get a string with only top level commands
                jt = inroute(('opt','freq','irc'),self.route_lines) # Major job types
                if jt:
                    self.JobType = jt
                self.JobType += inroute(('td','nmr','stable'),self.route_lines,add=True) # Additional job types

            # Recognize job type on the fly
            if ' Berny optimization' in s and self.JobType=='sp':
                self.JobType = 'opt'
            if rc['scan'].search(s):
                self.JobType = 'scan'

            #
            # ---------------------------------------- Read archive section -------------------------------------------
            #
            if 'l9999.exe' in s and 'Enter' in s:
                try:
                    while not '@' in self.l9999:
                        s2 = self.FI.next().strip()
                        if s2=='':
                            continue
                        self.l9999 += s2
                except StopIteration:
                    log.warning('EOF while reading l9999')
                    break
                #print self.l9999

                la = self.l9999.replace('\n ','').split('\\')

                if len(la)>5:
                    self.machine_name = la[2]
                    if la[5]:
                        self.basis = la[5]
                    #basis = la[5]
                    #if basis == 'gen':
                        #if basis_FN:
                            #self.basis = ' Basis(?): ' + basis_FN
                        #elif not self.basis:
                            #self.basis = ' Basis: n/a'
                    self.lot = la[4]
                    self.JobType9999 = la[3]
                    if self.JobType != self.JobType9999.lower():
                        self.JobType += "(%s)" % (self.JobType9999.lower())


            #
            # ---------------------------------------- Read simple values ---------------------------------------------
            #

            #Nproc
            if s.find(' Will use up to') == 0:
                self.n_cores = s.split()[4]


            # time
            if s.find(' Job cpu time:') == 0:
                s_splitted = s.split()
                try:
                    n_days = float(s_splitted[3])
                    n_hours = float(s_splitted[5])
                    n_mins = float(s_splitted[7])
                    n_sec = float(s_splitted[9])
                    self.time = n_days*24 + n_hours + n_mins/60 + n_sec/3600
                except:
                    self.time = '***'


            # n_atoms
            if s.find('NAtoms=') == 1:
                s_splitted = s.split()
                self.n_atoms = int(s_splitted[1])

            # n_basis
            if s.find('basis functions') == 7:
                s_splitted = s.split()
                self.n_primitives = int(s_splitted[3])

            # Basis
            if s.find('Standard basis:') == 1:
                self.basis = s.strip().split(':')[1]

            # n_electrons
            if s.find('alpha electrons') == 7:
                s_splitted = s.split()
                n_alpha = s_splitted[0]
                n_beta = s_splitted[3]
                self.n_electrons = int(n_alpha) + int(n_beta)


            # S^2
            if s.find(' S**2 before annihilation')==0:
                s_splitted = s.split()
                before = s_splitted[3][:-1]
                after = s_splitted[5]
                self.s2 = before + '/' + after
                for ct in self.all_coords.values():
                    if ct['all']:
                        ct['all'][-1].addProp('s2',self.s2)

            # CBS-QB3
            if ' CBS-QB3 Enthalpy' in s:
                self.extra += s

            # Solvent
            if ' Solvent              :' in s:
                self.solvent = s.split()[2][:-1]
            # Solvation model
            if not self.solv_model and 'Model                :' in s:
                self.solv_model = s.strip().split()[2]

            # Try to guess basis name from the file name
            if not basis_FN:
                bas_FN = rc['basis-fn'].match(s)
                if bas_FN:
                    basis_FN = re.sub('.*\/','',bas_FN.group(1))

            # Read Checkpoint file name
            if not self.chk:
                chk = rc['chk'].match(s)
                if chk:
                    self.chk = chk.group(1)

            # Read Symmetry
            if ' Full point group' in s:
                self.sym = s.split()[3]

            # Read charge_multmetry
            if not self.charge:
                charge_mult = rc['charge-mult'].match(s)
                if charge_mult:
                    self.charge = charge_mult.group(1)
                    self.mult   = charge_mult.group(2)

            # Collect WF convergence
            #scf_conv = rc['scf_conv'].match(s)
            #if not scf_conv:
                #scf_conv = rc['scf_iter'].match(s)
            #if scf_conv:
                #self.scf_conv.append(scf_conv.group(1))

            # Read Converged HF/DFT Energy
            scf_e = rc['scf done'].match(s)
            if scf_e:
                if s[14]=='U':
                    self.openShell = True
                self.scf_e = float(scf_e.group(1))
                self.scf_done = True
                for ct in self.all_coords.values():
                    if ct['all']:
                        ct['all'][-1].addProp('e', self.scf_e) # TODO Read in something like self.best_e instead!

            #CI/CC
            if not self.ci_cc_done:
                if ' CI/CC converged in' in s:
                    self.ci_cc_done = True
            if ' Largest amplitude=' in s:
                self.amplitude = s.split()[2].replace('D','E')

            # CI/CC Convergence
            ci_cc_conv = rc['ci_cc_conv'].match(s)
            if ci_cc_conv:
                x  = float(ci_cc_conv.group(1))
                self.ci_cc_conv.append(x)
            """
            Do we really need to parse post-hf energies?
            # Read post-HF energies
            if ' EUMP2 = ' in s:
                self.postHF_lot.append('MP2')
                self.postHF_e.append(s.split()[-1])
            # QCISD(T)
            qcisd_t = rc['qcisd_t'].match(s)
            if qcisd_t:
                self.postHF_lot.append('QCISD(T)')
                self.postHF_e.append(qcisd_t.group(1))
            """

            """
            #XXX Probably, we don't need it at all as more reliable topology can be read from NBO output
            # Read in internal coordinates topology
            if '! Name  Definition              Value          Derivative Info.                !' in s:
                dashes = self.FI.next()
                s = self.FI.next().strip()
                while not '----' in s:
                    self.topology.append(s.split()[2])
                    s = self.FI.next().strip()
            """
            #
            # ------------------------------------- NBO Topology ----------------------------------- 
            #
            if 'N A T U R A L   B O N D   O R B I T A L   A N A L Y S I S' in s:
                nbo_analysis = NBO()
                nbo_analysis.FI = self.FI
                nbo_analysis.parse()
                nbo_analysis.postprocess()
                self.topologies.append(nbo_analysis.topology) # Actually, we save a reference, so we can keep using nbo_top
                for ct in self.all_coords.values():
                    if ct['all']:
                        last_g = ct['all'][-1]
                        last_g.nbo_analysis = nbo_analysis
                        last_g.addAtProp(nbo_analysis.charges)
                        if nbo_analysis.OpenShell:
                            last_g.addAtProp(nbo_analysis.spins)

            #
            # ------------------------------------- Charges ------------------------------------- 
            #
            try:
                for ch in self.chash.keys():
                    if self.chash[ch]['Entry'] in s:
                        pc = AtomicProps(attr=ch)
                        self.FI.next()
                        s = self.FI.next()
                        while not self.chash[ch]['Stop'] in s:
                            c = s.strip().split()[2]
                            pc.data.append(float(c))
                            s = self.FI.next()
                        for ct in self.all_coords.values():
                            if ct['all']:
                                ct['all'][-1].addAtProp(pc)
            except StopIteration:
                log.warning('EOF while reading charges')
                break


            #
            # --------------------------------------------- Opt -------------------------------------------------------
            #
            if 'opt' in self.JobType:
                if '         Item               Value     Threshold  Converged?' in s:
                    self.opt_iter += 1
                    try:
                        for conv in ('max_force','rms_force','max_displacement','rms_displacement'):
                            s = self.FI.next()
                            x, thr = floatize(s[27:35]), float(s[40:48])
                            conv_param = getattr(self,conv)
                            conv_param.append(x-thr)
                            for ct in self.all_coords.values():
                                if ct['all']:
                                    ct['all'][-1].addProp(conv, x-thr)
                    except:
                        log.warngin('EOF in the "Converged?" block')
                        break
                if '    -- Stationary point found.' in s:
                    self.opt_ok = True

            #
            # --------------------------------------------- IRC -------------------------------------------------------
            #
            if 'irc' in self.JobType:
                # IRC geometry was just collected?

                if 'Magnitude of analytic gradient =' in s:
                    self.grad = float(s.split('=')[1])

                if 'Rxn path following direction =' in s:
                    if 'Forward' in s:
                        self.irc_direction = 1
                    if 'Reverse' in s:
                        self.irc_direction = -1

                """
                b_optd = ('Optimized point #' in s) and ('Found' in s)
                b_deltax = '   Delta-x Convergence Met' in s
                b_flag = 'Setting convergence flag and skipping corrector integration' in s
                t_irc_point = b_optd or b_deltax or b_flag
                """

                """
                G03:
                Order of IRC-related parameters:
                    1. Geometry,
                    2. Energy calculated for that geometry
                    3. Optimization convergence test
                G09:
                For IRC, there is a geometry entry right before the 'NET REACTION COORDINATE' string,
                and energy has not been attached to it yet, so we do it manually
                """
                if 'NET REACTION COORDINATE UP TO THIS POINT =' in s:
                    x = float(s.split('=')[1])
                    for ct in self.all_coords.values():
                        if ct['all']:
                            girc = ct['all'][-1]
                            girc.addProp('x', x*self.irc_direction)
                            girc.addProp('e', self.scf_e)
                            if '/' in str(self.s2):
                                girc.addProp('s2', self.s2.split('/')[1].strip())
                            ct['special'].geoms.append(girc)

                if 'Minimum found on this side of the potential' in s\
                    or 'Beginning calculation of the REVERSE path' in s:
                    self.irc_direction *= -1
                    self.irc_both = True

            #
            # -------------------------------------------- Scan -------------------------------------------------------
            #
            if 'scan' in self.JobType:
                """
                Order of scan-related parameters:
                    1. Geometry,
                    2. Energy calculated for that geometry
                    3. Optimization convergence test
                If Stationary point has been found, we already have geometry with energy attached as prop, so we just pick it up
                """
                # Memorize scan geometries
                if '    -- Stationary point found.' in s:
                    for ct in self.all_coords.values():
                        if ct['all']:
                            ct['special'].geoms.append(ct['all'][-1])
                # Record scanned parameters
                for param in  self.scan_param_description.values():
                    if ' ! ' in s and param in s:
                        x = float(s.split()[3])
                        for ct in self.all_coords.values():
                            if ct['special']:
                                ct['special'][-1].addProp(param,x)
                # Keep extended information about scanned parameter
                sc = rc['scan param'].match(s)
                if sc:
                    param, param_full = sc.group(1), sc.group(2)
                    self.scan_param_description[param] = param_full

            #
            # ------------------------------------- Scan or Opt: Frozen parameters -------------------------------------
            #
            if 'scan' in self.JobType or 'opt' in self.JobType:
                sc = rc['frozen'].match(s)
                if sc:
                    self.frozen[sc.group(1)] = sc.group(2)

            #
            # ------------------------------------------ Freqs --------------------------------------------------------
            #
            if 'freq' in self.JobType or 'opt' in self.JobType:
                # T
                if ' Temperature ' in s:
                    x = float(s.split()[1])
                    self.freq_temp.append(x)
                # ZPE, H, G
                if ' Sum of electronic and zero-point Energies=' in s:
                    try:
                        x = float(s.split()[-1])
                        self.freq_zpe.append(x)
                        self.FI.next()
                        # H
                        Htherm = self.FI.next()
                        x = float(Htherm.split('=')[1])
                        self.freq_ent.append(x)
                        # G
                        Gtherm = self.FI.next()
                        x = float(Gtherm.split('=')[1])
                        self.freq_G.append(x)
                    except:
                        log.warngin('EOF in the Thermochemistry block')
                        break

                # Read in vibrational modes
                if 'Frequencies' in s:
                    for fr in s.split(' '):
                        if '.' in fr:
                            self.freqs.append(float(fr))

                # Read in imaginary frequencies
                if      (not t_ifreq_done) \
                   and (self.freqs) \
                   and (self.freqs[0]<0) \
                   and not rc['alnum'].search(s):
                       ifreq = rc['ifreq'].search(s)
                       if ifreq:
                           x, y, z = ifreq.groups()
                           self.vector.append('%s %s %s' % (x,y,z))
                       else:
                            t_ifreq_done = True

            #
            # --------------------------------------- TD --------------------------------------------------------------
            #
            if 'td' in self.JobType:
                uv = rc['excited state'].match(s)
                if uv:
                    self.n_states = uv.group(1)
                    #print self.n_states
                    l,f = float(uv.group(2)),float(uv.group(3))
                    self.uv[l] = f
                    #self.uv[uv.group(1)] = uv.group(2)

            #
            # --------------------------------------- Stable --------------------------------------------------------------
            #
            if 'stable' in self.JobType:
                if s.find(' The wavefunction has an')==0 and 'instability' in s:
                    self.extra += s

            #
            # ======================================= End of Gau Step ==================================================
            #
            if 'Normal termination of Gaussian' in s:
                self.OK = True
                break

        # We got here either 
        else:
            self.blanc = (s=='BLANC')
        return