def use_points_for_interpolation(self, cNrm, mNrm, interpolator): """ Make a basic solution object with a consumption function and marginal value function (unconditional on the preference shock). Parameters ---------- cNrm : np.array Consumption points for interpolation. mNrm : np.array Corresponding market resource points for interpolation. interpolator : function A function that constructs and returns a consumption function. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function, and minimum m. """ # Make the preference-shock specific consumption functions PrefShkCount = self.PrefShkVals.size cFunc_list = [] for j in range(PrefShkCount): MPCmin_j = self.MPCminNow * self.PrefShkVals[j]**(1.0 / self.CRRA) cFunc_this_shock = LowerEnvelope( LinearInterp( mNrm[j, :], cNrm[j, :], intercept_limit=self.hNrmNow * MPCmin_j, slope_limit=MPCmin_j, ), self.cFuncNowCnst, ) cFunc_list.append(cFunc_this_shock) # Combine the list of consumption functions into a single interpolation cFuncNow = LinearInterpOnInterp1D(cFunc_list, self.PrefShkVals) # Make the ex ante marginal value function (before the preference shock) m_grid = self.aXtraGrid + self.mNrmMinNow vP_vec = np.zeros_like(m_grid) for j in range( PrefShkCount): # numeric integration over the preference shock vP_vec += (self.uP(cFunc_list[j](m_grid)) * self.PrefShkPrbs[j] * self.PrefShkVals[j]) vPnvrs_vec = self.uPinv(vP_vec) vPfuncNow = MargValueFuncCRRA(LinearInterp(m_grid, vPnvrs_vec), self.CRRA) # Store the results in a solution object and return it solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow) return solution_now
def post_solve(self): self.solution_fast = deepcopy(self.solution) if self.cycles == 0: cycles = 1 else: cycles = self.cycles self.solution[-1] = self.solution_terminal_cs for i in range(cycles): for j in range(self.T_cycle): solution = self.solution[i * self.T_cycle + j] # Define the borrowing constraint (limiting consumption function) cFuncNowCnst = LinearInterp( np.array([solution.mNrmMin, solution.mNrmMin + 1]), np.array([0.0, 1.0]), ) """ Constructs a basic solution for this period, including the consumption function and marginal value function. """ if self.CubicBool: # Makes a cubic spline interpolation of the unconstrained consumption # function for this period. cFuncNowUnc = CubicInterp( solution.mNrm, solution.cNrm, solution.MPC, solution.cFuncLimitIntercept, solution.cFuncLimitSlope, ) else: # Makes a linear interpolation to represent the (unconstrained) consumption function. # Construct the unconstrained consumption function cFuncNowUnc = LinearInterp( solution.mNrm, solution.cNrm, solution.cFuncLimitIntercept, solution.cFuncLimitSlope, ) # Combine the constrained and unconstrained functions into the true consumption function cFuncNow = LowerEnvelope(cFuncNowUnc, cFuncNowCnst) # Make the marginal value function and the marginal marginal value function vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA) # Pack up the solution and return it consumer_solution = ConsumerSolution( cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=solution.mNrmMin, hNrm=solution.hNrm, MPCmin=solution.MPCmin, MPCmax=solution.MPCmax, ) if self.vFuncBool: vNvrsFuncNow = CubicInterp( solution.mNrmGrid, solution.vNvrs, solution.vNvrsP, solution.MPCminNvrs * solution.hNrm, solution.MPCminNvrs, ) vFuncNow = ValueFuncCRRA(vNvrsFuncNow, self.CRRA) consumer_solution.vFunc = vFuncNow if self.CubicBool or self.vFuncBool: _searchFunc = ( _find_mNrmStECubic if self.CubicBool else _find_mNrmStELinear ) # Add mNrmStE to the solution and return it consumer_solution.mNrmStE = _add_mNrmStEIndNumba( self.PermGroFac[j], self.Rfree, solution.Ex_IncNext, solution.mNrmMin, solution.mNrm, solution.cNrm, solution.MPC, solution.MPCmin, solution.hNrm, _searchFunc, ) self.solution[i * self.T_cycle + j] = consumer_solution
def solveConsMarkovALT(solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rfree,PermGroFac,uPfac, MrkvArray,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool): ''' Solves a single period consumption-saving problem with risky income and stochastic transitions between discrete states, in a Markov fashion. Has identical inputs as solveConsIndShock, except for a discrete Markov transitionrule MrkvArray. Markov states can differ in their interest factor, permanent growth factor, and income distribution, so the inputs Rfree, PermGroFac, and IncomeDstn are arrays or lists specifying those values in each (succeeding) Markov state. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. IncomeDstn : DiscreteDistribution A representation of permanent and transitory income shocks that might arrive at the beginning of next period. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. CRRA : float Coefficient of relative risk aversion. Rfree : np.array Risk free interest factor on end-of-period assets for each Markov state in the succeeding period. PermGroFac : np.array Expected permanent income growth factor at the end of this period for each Markov state in the succeeding period. uPfac : np.array Scaling factor for (marginal) utility in each current Markov state. MrkvArray : np.array An NxN array representing a Markov transition matrix between discrete states. The i,j-th element of MrkvArray is the probability of moving from state i in period t to state j in period t+1. BoroCnstArt: float or None Borrowing constraint for the minimum allowable assets to end the period with. If it is less than the natural borrowing constraint, then it is irrelevant; BoroCnstArt=None indicates no artificial bor- rowing constraint. aXtraGrid: np.array Array of "extra" end-of-period asset values-- assets above the absolute minimum acceptable level. vFuncBool: boolean An indicator for whether the value function should be computed and included in the reported solution. Not used. CubicBool: boolean An indicator for whether the solver should use cubic or linear inter- polation. Not used. Returns ------- solution : ConsumerSolution The solution to the single period consumption-saving problem. Includes a consumption function cFunc (using cubic or linear splines), a marg- inal value function vPfunc, a minimum acceptable level of normalized market resources mNrmMin. All of these attributes are lists or arrays, with elements corresponding to the current Markov state. E.g. solution.cFunc[0] is the consumption function when in the i=0 Markov state this period. ''' # Get sizes of grids aCount = aXtraGrid.size StateCount = MrkvArray.shape[0] # Loop through next period's states, assuming we reach each one at a time. # Construct EndOfPrdvP_cond functions for each state. BoroCnstNat_cond = [] EndOfPrdvPfunc_cond = [] for j in range(StateCount): # Unpack next period's solution vPfuncNext = solution_next.vPfunc[j] mNrmMinNext = solution_next.mNrmMin[j] # Unpack the income shocks ShkPrbsNext = IncomeDstn[j].pmf PermShkValsNext = IncomeDstn[j].X[0] TranShkValsNext = IncomeDstn[j].X[1] ShkCount = ShkPrbsNext.size aXtra_tiled = np.tile(np.reshape(aXtraGrid, (aCount, 1)), (1, ShkCount)) # Make tiled versions of the income shocks # Dimension order: aNow, Shk ShkPrbsNext_tiled = np.tile(np.reshape(ShkPrbsNext, (1, ShkCount)), (aCount, 1)) PermShkValsNext_tiled = np.tile(np.reshape(PermShkValsNext, (1, ShkCount)), (aCount, 1)) TranShkValsNext_tiled = np.tile(np.reshape(TranShkValsNext, (1, ShkCount)), (aCount, 1)) # Find the natural borrowing constraint aNrmMin_candidates = PermGroFac[j]*PermShkValsNext_tiled/Rfree[j]*(mNrmMinNext - TranShkValsNext_tiled[0, :]) aNrmMin = np.max(aNrmMin_candidates) BoroCnstNat_cond.append(aNrmMin) # Calculate market resources next period (and a constant array of capital-to-labor ratio) aNrmNow_tiled = aNrmMin + aXtra_tiled mNrmNext_array = Rfree[j]*aNrmNow_tiled/PermShkValsNext_tiled + TranShkValsNext_tiled # Find marginal value next period at every income shock realization and every aggregate market resource gridpoint vPnext_array = Rfree[j]*PermShkValsNext_tiled**(-CRRA)*vPfuncNext(mNrmNext_array) # Calculate expectated marginal value at the end of the period at every asset gridpoint EndOfPrdvP = DiscFac*np.sum(vPnext_array*ShkPrbsNext_tiled, axis=1) # Make the conditional end-of-period marginal value function EndOfPrdvPnvrs = EndOfPrdvP**(-1./CRRA) EndOfPrdvPnvrsFunc = LinearInterp(np.insert(aNrmMin + aXtraGrid, 0, aNrmMin), np.insert(EndOfPrdvPnvrs, 0, 0.0)) EndOfPrdvPfunc_cond.append(MargValueFunc(EndOfPrdvPnvrsFunc, CRRA)) # Now loop through *this* period's discrete states, calculating end-of-period # marginal value (weighting across state transitions), then construct consumption # and marginal value function for each state. cFuncNow = [] vPfuncNow = [] mNrmMinNow = [] for i in range(StateCount): # Find natural borrowing constraint for this state aNrmMin_candidates = np.zeros(StateCount) + np.nan for j in range(StateCount): if MrkvArray[i, j] > 0.: # Irrelevant if transition is impossible aNrmMin_candidates[j] = BoroCnstNat_cond[j] aNrmMin = np.nanmax(aNrmMin_candidates) # Find the minimum allowable market resources if BoroCnstArt is not None: mNrmMin = np.maximum(BoroCnstArt, aNrmMin) else: mNrmMin = aNrmMin mNrmMinNow.append(mNrmMin) # Make tiled grid of aNrm aNrmNow = aNrmMin + aXtraGrid # Loop through feasible transitions and calculate end-of-period marginal value EndOfPrdvP = np.zeros(aCount) for j in range(StateCount): if MrkvArray[i, j] > 0.: temp = MrkvArray[i, j]*EndOfPrdvPfunc_cond[j](aNrmNow) EndOfPrdvP += temp EndOfPrdvP *= LivPrb[i] # Account for survival out of the current state # Calculate consumption and the endogenous mNrm gridpoints for this state cNrmNow = (EndOfPrdvP/uPfac[i])**(-1./CRRA) mNrmNow = aNrmNow + cNrmNow # Make a piecewise linear consumption function c_temp = np.insert(cNrmNow, 0, 0.0) # Add point at bottom m_temp = np.insert(mNrmNow, 0, aNrmMin) cFuncUnc = LinearInterp(m_temp, c_temp) cFuncCnst = LinearInterp(np.array([mNrmMin, mNrmMin+1.0]), np.array([0.0, 1.0])) cFuncNow.append(LowerEnvelope(cFuncUnc,cFuncCnst)) # Construct the marginal value function using the envelope condition m_temp = aXtraGrid + mNrmMin c_temp = cFuncNow[i](m_temp) uP = uPfac[i]*c_temp**(-CRRA) vPnvrs = uP**(-1./CRRA) vPnvrsFunc = LinearInterp(np.insert(m_temp, 0, mNrmMin), np.insert(vPnvrs, 0, 0.0)) vPfuncNow.append(MargValueFunc(vPnvrsFunc, CRRA)) # Pack up and return the solution solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=mNrmMinNow) return solution_now
def make_solution(self, cNrm, mNrm): """ Construct an object representing the solution to this period's problem. Parameters ---------- cNrm : np.array Array of normalized consumption values for interpolation. Each row corresponds to a Markov state for this period. mNrm : np.array Array of normalized market resource values for interpolation. Each row corresponds to a Markov state for this period. Returns ------- solution : ConsumerSolution The solution to the single period consumption-saving problem. Includes a consumption function cFunc (using cubic or linear splines), a marg- inal value function vPfunc, a minimum acceptable level of normalized market resources mNrmMin, normalized human wealth hNrm, and bounding MPCs MPCmin and MPCmax. It might also have a value function vFunc and marginal marginal value function vPPfunc. All of these attributes are lists or arrays, with elements corresponding to the current Markov state. E.g. solution.cFunc[0] is the consumption function when in the i=0 Markov state this period. """ solution = ( ConsumerSolution() ) # An empty solution to which we'll add state-conditional solutions # Calculate the MPC at each market resource gridpoint in each state (if desired) if self.CubicBool: dcda = self.EndOfPrdvPP / self.uPP(np.array(self.cNrmNow)) MPC = dcda / (dcda + 1.0) self.MPC_temp = np.hstack( (np.reshape(self.MPCmaxNow, (self.StateCount, 1)), MPC) ) interpfunc = self.make_cubic_cFunc else: interpfunc = self.make_linear_cFunc # Loop through each current period state and add its solution to the overall solution for i in range(self.StateCount): # Set current-period-conditional human wealth and MPC bounds self.hNrmNow_j = self.hNrmNow[i] self.MPCminNow_j = self.MPCminNow[i] if self.CubicBool: self.MPC_temp_j = self.MPC_temp[i, :] # Construct the consumption function by combining the constrained and unconstrained portions self.cFuncNowCnst = LinearInterp( [self.mNrmMin_list[i], self.mNrmMin_list[i] + 1.0], [0.0, 1.0] ) cFuncNowUnc = interpfunc(mNrm[i, :], cNrm[i, :]) cFuncNow = LowerEnvelope(cFuncNowUnc, self.cFuncNowCnst) # Make the marginal value function and pack up the current-state-conditional solution vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA) solution_cond = ConsumerSolution( cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow ) if ( self.CubicBool ): # Add the state-conditional marginal marginal value function (if desired) solution_cond = self.add_vPPfunc(solution_cond) # Add the current-state-conditional solution to the overall period solution solution.append_solution(solution_cond) # Add the lower bounds of market resources, MPC limits, human resources, # and the value functions to the overall solution solution.mNrmMin = self.mNrmMin_list solution = self.add_MPC_and_human_wealth(solution) if self.vFuncBool: vFuncNow = self.make_vFunc(solution) solution.vFunc = vFuncNow # Return the overall solution to this period return solution
def makeBasicSolution(self, EndOfPrdvP, aNrm, wageShkVals, prefShkVals): ''' Given end of period assets and end of period marginal value, construct the basic solution for this period. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal values. aNrm : np.array Array of end-of-period asset values that yield the marginal values in EndOfPrdvP. wageShkVals : np.array Array of this period transitory wage shock values. prefShkVals : np.array Array of this period preference shock values. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function. ''' num_pref_shocks = len(prefShkVals) num_wage_shocks = len(wageShkVals) cFuncBaseByPref_list = [] vPFuncBaseByPref_list = [] lFuncBaseByPref_list = [] for i in range(num_wage_shocks): cFuncBaseByPref_list.append([]) vPFuncBaseByPref_list.append([]) lFuncBaseByPref_list.append([]) for j in range(num_pref_shocks): c_temp = self.uPinv(EndOfPrdvP / prefShkVals[j]) l_temp = self.LabSupply(wageShkVals[i] * EndOfPrdvP) b_temp = c_temp + aNrm - l_temp * wageShkVals[i] if wageShkVals[i] == 0.0: c_temp = np.insert(c_temp, 0, 0., axis=-1) l_temp = np.insert(l_temp, 0, 0.0, axis=-1) b_temp = np.insert(b_temp, 0, 0.0, axis=-1) lFuncBaseByPref_list[i].append( LinearInterp(b_temp, l_temp, lower_extrap=True)) cFunc1 = LinearInterp(b_temp, c_temp, lower_extrap=True) cFunc2 = LinearInterp(b_temp, l_temp * wageShkVals[i] + b_temp, lower_extrap=True) cFuncBaseByPref_list[i].append(LowerEnvelope(cFunc1, cFunc2)) pseudo_inverse_vPfunc1 = LinearInterp( b_temp, prefShkVals[j]**(-1.0 / self.CRRA) * c_temp, lower_extrap=True) pseudo_inverse_vPfunc2 = LinearInterp( b_temp, prefShkVals[j]**(-1.0 / self.CRRA) * (l_temp * wageShkVals[i] + b_temp), lower_extrap=True) pseudo_inverse_vPfunc = LowerEnvelope(pseudo_inverse_vPfunc1, pseudo_inverse_vPfunc2) vPFuncBaseByPref_list[i].append( MargValueFunc(pseudo_inverse_vPfunc, self.CRRA)) cFuncNow = BilinearInterpOnInterp1D(cFuncBaseByPref_list, wageShkVals, prefShkVals) vPfuncNow = BilinearInterpOnInterp1D(vPFuncBaseByPref_list, wageShkVals, prefShkVals) lFuncNow = BilinearInterpOnInterp1D(lFuncBaseByPref_list, wageShkVals, prefShkVals) # Pack up and return the solution solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow) solution_now.lFunc = lFuncNow return solution_now