Esempio n. 1
0
def get_p_values(pkl_list, name_list, cut=sys.maxint, round_=0):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(name_list,
                                                        pickles,
                                                        cut=cut)
    p_values = calculate_statistics(best_dict, keys, round_=round_)
    return p_values
Esempio n. 2
0
def main(pkl_list, name_list, save="", cut=sys.maxint,
         template_string=template_string, experiment_name="Name",
         num_evals="\\#eval"):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(name_list, pickles, cut)
    return generate_tex_template(best_dict, name_list,
                          template_string=template_string, save=save,
                          num_evals=num_evals, experiment_name=experiment_name)
Esempio n. 3
0
def main(pkl_list, name_list, cut=sys.maxint):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(name_list, pickles,
                                                       cut=cut)

    for k in keys:
        sys.stdout.write("%10s: %s experiment(s)\n" % (k, len(best_dict[k])))

    sys.stdout.write("Unpaired t-tests-----------------------------------------------------\n")
    # TODO: replace by itertools
    for idx, k in enumerate(keys):
        if len(keys) > 1:
            for j in keys[idx+1:]:
                t_true, p_true = stats.ttest_ind(best_dict[k], best_dict[j])
                rounded_t_true, rounded_p_true = stats.ttest_ind(numpy.round(best_dict[k], 3),
                                                                 numpy.round(best_dict[j], 3))

                sys.stdout.write("%10s vs %10s\n" % (k, j))
                sys.stdout.write("Standard independent 2 sample test, equal population variance\n")
                sys.stdout.write(" "*24 + "  T: %10.5e, p-value: %10.5e (%5.3f%%) \n" %
                                (t_true, p_true, p_true*100))
                sys.stdout.write("Rounded:                ")
                sys.stdout.write("  T: %10.5e, p-value: %10.5e (%5.3f%%)\n" %
                                (rounded_t_true, rounded_p_true, rounded_p_true*100))
                if tuple(map(int, (scipy.__version__.split(".")))) >= (0, 11, 0):
                    # print scipy.__version__ >= '0.11.0'
                    t_false, p_false = stats.ttest_ind(best_dict[k], best_dict[j], equal_var=False)
                    rounded_t_false, rounded_p_false = stats.ttest_ind(numpy.round(best_dict[k], 3),
                                                                       numpy.round(best_dict[j], 3),
                                                                       equal_var=False)
                    sys.stdout.write("Welch's t-test, no equal population variance\n")
                    sys.stdout.write(" "*24)
                    sys.stdout.write(": T: %10.5e, p-value: %10.5e (%5.3f%%)\n" %
                                    (t_false, p_false, p_false*100))
                    sys.stdout.write("Rounded:                ")
                    sys.stdout.write(": T: %10.5e, p-value: %10.5e (%5.3f%%)\n" %
                                    (rounded_t_false, rounded_p_false, rounded_p_false*100))
                sys.stdout.write("\n")

    sys.stdout.write("Best Value-----------------------------------------------------------\n")
    for k in keys:
        sys.stdout.write("%10s: %10.5f (min: %10.5f, max: %10.5f, std: %5.3f)\n" %
                        (k, float(numpy.mean(best_dict[k])), float(numpy.min(best_dict[k])),
                         numpy.max(best_dict[k]), float(numpy.std(best_dict[k]))))

    sys.stdout.write("Needed Trials--------------------------------------------------------\n")
    for k in keys:
        sys.stdout.write("%10s: %10.5f (min: %10.5f, max: %10.5f, std: %5.3f)\n" %
                        (k, float(numpy.mean(idx_dict[k])), float(numpy.min(idx_dict[k])),
                         numpy.max(idx_dict[k]), float(numpy.std(idx_dict[k]))))

    sys.stdout.write("------------------------------------------------------------------------\n")
Esempio n. 4
0
def get_statistics_as_text(pkl_list, name_list, cut=sys.maxint, round_=0):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(name_list,
                                                        pickles,
                                                        cut=cut)

    p_values = calculate_statistics(best_dict, keys, round_=round_)
    output = StringIO.StringIO()
    output.write(
        "Unpaired t-tests-----------------------------------------------------\n"
    )
    output.write(
        "Standard independent 2 sample test, equal population variance\n")

    for key in keys:
        output.write("%10s: %s experiment(s)\n" % (key, len(best_dict[key])))

    for idx, key0 in enumerate(p_values):
        if len(keys) > 1:
            for j, key1 in enumerate(p_values[key0]):
                output.write("%10s vs %10s" % (key0, key1))
                output.write(
                    "      p-value: %10.5e (%5.3f%%) \n" %
                    (p_values[key0][key1], p_values[key0][key1] * 100))
                output.write("\n")

    output.write(
        "Best Value-----------------------------------------------------------\n"
    )
    for k in keys:
        output.write("%10s: %10.5f (min: %10.5f, max: %10.5f, std: %5.3f)\n" %
                     (k, float(numpy.mean(best_dict[k])),
                      float(numpy.min(best_dict[k])), numpy.max(
                          best_dict[k]), float(numpy.std(best_dict[k]))))

    output.write(
        "Needed Trials--------------------------------------------------------\n"
    )
    for k in keys:
        output.write(
            "%10s: %10.5f (min: %10.5f, max: %10.5f, std: %5.3f)\n" %
            (k, float(numpy.mean(idx_dict[k])), float(numpy.min(idx_dict[k])),
             numpy.max(idx_dict[k]), float(numpy.std(idx_dict[k]))))

    output.write(
        "------------------------------------------------------------------------\n"
    )
    output.seek(0)
    return output
def main(pkl_list,
         name_list,
         save="",
         cut=sys.maxint,
         template_string=template_string,
         experiment_name="Name",
         num_evals="\\#eval"):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(
        name_list, pickles, cut)
    return generate_tex_template(best_dict,
                                 name_list,
                                 template_string=template_string,
                                 save=save,
                                 num_evals=num_evals,
                                 experiment_name=experiment_name)
Esempio n. 6
0
def get_pairwise_wins(pkl_list, name_list, cut=sys.maxint, round_=0):
    pickles = plot_util.load_pickles(name_list, pkl_list)
    best_dict, idx_dict, keys = plot_util.get_best_dict(name_list,
                                                        pickles,
                                                        cut=cut)
    p_values = calculate_statistics(best_dict, keys, round_=round_)

    wins_of_optimizer = dict()
    for key in p_values:
        wins_of_optimizer[key] = defaultdict(int)

    for idx, key0 in enumerate(p_values):
        if len(keys) > 1:
            for j, key1 in enumerate(p_values[key0]):
                if p_values[key0][key1] < 0.05:
                    if best_dict[key0] < best_dict[key1]:
                        wins_of_optimizer[key0][key1] += 1
                    elif best_dict[key1] < best_dict[key0]:
                        wins_of_optimizer[key1][key0] += 1

    return wins_of_optimizer
Esempio n. 7
0
def calculate_rankings(trial_list, name_list, bootstrap_samples=500, cut=50):
    bootstrap_samples = int(bootstrap_samples)
    optimizers = [name[0] for name in name_list]
    pickles = plot_util.load_pickles(name_list, trial_list)
    rankings = dict()

    rs = np.random.RandomState(1)

    combinations = []
    for i in range(bootstrap_samples):
        combination = []
        target = len(optimizers)
        maximum = [len(pickles[name]) for name in optimizers]
        for idx in range(target):
            combination.append(rs.randint(maximum[idx]))
        combinations.append(np.array(combination))

    for optimizer in optimizers:
        rankings[optimizer] = np.zeros((cut + 1, ), dtype=np.float64)
        rankings[optimizer][0] = np.mean(range(1, len(optimizers) + 1))

    for i in range(1, cut + 1):
        num_products = 0

        for combination in combinations:

            ranks = scipy.stats.rankdata([
                np.round(
                    plot_util.get_best(pickles[optimizers[idx]][number], i), 5)
                for idx, number in enumerate(combination)
            ])
            num_products += 1
            for j, optimizer in enumerate(optimizers):
                rankings[optimizer][i] += ranks[j]

        for optimizer in optimizers:
            rankings[optimizer][i] = rankings[optimizer][i] / num_products

    return rankings
Esempio n. 8
0
def calculate_rankings(trial_list, name_list, bootstrap_samples=500, cut=50):
    bootstrap_samples = int(bootstrap_samples)
    optimizers = [name[0] for name in name_list]
    pickles = plot_util.load_pickles(name_list, trial_list)
    rankings = dict()

    rs = np.random.RandomState(1)

    combinations = []
    for i in range(bootstrap_samples):
        combination = []
        target = len(optimizers)
        maximum = [len(pickles[name]) for name in optimizers]
        for idx in range(target):
            combination.append(rs.randint(maximum[idx]))
        combinations.append(np.array(combination))

    for optimizer in optimizers:
        rankings[optimizer] = np.zeros((cut+1,), dtype=np.float64)
        rankings[optimizer][0] = np.mean(range(1, len(optimizers) + 1))

    for i in range(1, cut+1):
        num_products = 0

        for combination in combinations:

            ranks = scipy.stats.rankdata(
                [np.round(
                    plot_util.get_best(pickles[optimizers[idx]][number], i), 5)
                 for idx, number in enumerate(combination)])
            num_products += 1
            for j, optimizer in enumerate(optimizers):
                rankings[optimizer][i] += ranks[j]

        for optimizer in optimizers:
            rankings[optimizer][i] = rankings[optimizer][i] / num_products

    return rankings