def calculate_hidden_size(self):
     samples_in_training_data = 116100
     scaling_factor = 5
     input_neurons = self.input_size
     output_neurons = self.output_size
     size = int(samples_in_training_data / (scaling_factor * (input_neurons + output_neurons)))
     LoggerHelper.info('Calculated hidden size is ' + str(size))
     if size == 0:
         LoggerHelper.error('Calculated hidden size is changed to 2')
         return 2
     else:
         return size
Esempio n. 2
0
def get_news_type(dnn_type):
    dnn_type = dnn_type.strip()
    if dnn_type == "CNN":
        return NewsCnnMain()
    elif dnn_type == "RNN":
        return NewsDnnGeneralMain()
    elif dnn_type == "TA":
        return TaMain()
    elif dnn_type == "PriceRNN":
        return PriceRnnMain()
    elif dnn_type == "CATE":
        return NewsCateMain()
    else:  # Default RNN
        LoggerHelper.error("DNN type (" + dnn_type + ") is not found. Default RNN (NewsDnnGeneralMain) is used.")
        return NewsDnnGeneralMain()
 async def __random_news_handler(self, request):
     request = await request.json()
     print(request)
     default = self.get_news_data(self.db, self.defaultCollection,
                                  request['object_id'])
     if default is None:
         res = {'isError': True, 'Message': "Object Is Not Found."}
         res = JSONEncoder().encode(res)
         return web.json_response(res)
     else:
         try:
             self.toCollection.insert({
                 "_id":
                 default["_id"],
                 "title":
                 default["title"],
                 "summery":
                 default["summery"],
                 "article":
                 default['authors'],
                 "url":
                 default["url"],
                 "category":
                 request["categories"],
                 "price_after_minute":
                 default["price_after_minute"],
                 "price_after_hour":
                 default["price_after_hour"],
                 "price_after_day":
                 default["price_after_day"],
                 "price_before":
                 default["price_before"],
                 "wiki_relatedness":
                 default["wiki_relatedness"],
                 "tweet_count":
                 default["tweet_count"],
                 "tweet_percentage":
                 default["tweet_percentage"],
                 "wiki_relatedness_nor":
                 default["wiki_relatedness_nor"],
                 "tweet_count_nor":
                 default["tweet_count_nor"],
                 "date":
                 default["date"],
                 "authors":
                 default["authors"],
                 "comment":
                 request['comment'],
                 "price_effect":
                 request['effect']
             })
             default['is_controlled'] = True
             default['is_incorrect'] = False
             self.record_one_field(self.defaultCollection, default)
             # price_effect effect
             res = {'isError': False, 'Message': "Success"}
         except Exception as exception:
             res = {
                 'isError': True,
                 'Message': "Insert Error. Please inform the Admin"
             }
             LoggerHelper.error(type(exception).__name__)
             LoggerHelper.error("Ex: " + str(exception))
             LoggerHelper.error(traceback.format_exc())
         res = JSONEncoder().encode(res)
         return web.json_response(res)
Esempio n. 4
0
        LoggerHelper.info("News Stock Prediction is ended.")
        # WordEmbedding(path=Config.word_embedding.path)
        # news_dnn = NewsDnnMain(epochs=int(Config.training.epochs),
                                # batch_size=int(Config.training.batch_size),
                                # seq_length=int(Config.training.sequence_length),
                                # lr=float(Config.training.lr))3
    if args.statistics:
        LoggerHelper.info("Starting Statistic Collection Mode...")
        Statistics().collect()
        LoggerHelper.info("Statistic Collection is ended...")

    if args.test:
        LoggerHelper.info("Starting Test Mode...")
        TransformersTest.sentiment_analysis_test()
        LoggerHelper.info("Test Mode is ended...")

    if args.webservice:
        web_manager = WebManager()
        web_manager.add_static_files()
        web_manager.add_news_root()
        web_manager.run()


if __name__ == "__main__":
    try:
        main()
    except Exception as exception:
        LoggerHelper.error("Ex: " + str(exception))
        LoggerHelper.error(traceback.format_exc())
    exit()