Esempio n. 1
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from sklearn.preprocessing import StandardScaler, OneHotEncoder

At1 = column_pipeline("At1", NumberSelector, StandardScaler, {})
At2 = column_pipeline("At2", NumberSelector, StandardScaler, {})
Class = column_pipeline("Class", NumberSelector, OneHotEncoder, {"categories":"auto"})

Column_pipeline_Dictionary = {"At1":At1, "At2":At2, "Class":Class}
Esempio n. 2
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from sklearn.preprocessing import OneHotEncoder, StandardScaler
import numpy as np

_Sex = {"handle_unknown": "ignore"}
_Rings = {"categories": np.array(list(range(100))).reshape(1, -1)}

Sex = column_pipeline("Sex", TextSelector, OneHotEncoder, _Sex)
Length = column_pipeline("Length", NumberSelector, StandardScaler, {})
Diameter = column_pipeline("Diameter", NumberSelector, StandardScaler, {})
Height = column_pipeline("Height", NumberSelector, StandardScaler, {})
Whole_weight = column_pipeline("Whole_weight", NumberSelector, StandardScaler,
                               {})
Shucked_weight = column_pipeline("Shucked_weight", NumberSelector,
                                 StandardScaler, {})
Viscera_weight = column_pipeline("Viscera_weight", NumberSelector,
                                 StandardScaler, {})
Shell_weight = column_pipeline("Shell_weight", NumberSelector, StandardScaler,
                               {})
Rings = column_pipeline("Rings", NumberSelector, OneHotEncoder, _Rings)

Column_pipeline_Dictionary = {
    "Sex": Sex,
    "Length": Length,
    "Diameter": Diameter,
    "Height": Height,
    "Whole_weight": Whole_weight,
    "Shucked_weight": Shucked_weight,
Esempio n. 3
0
from Helper.Transform.Columns.column_pipeline import column_pipeline

from Helper.Transform.Custom.nominal import _Identity

_ClumpThickness = {}
_CellSize = {}
_CellShape = {}
_MaginalAdhesion = {}
_EpithelialSize = {}
_BareNuclei = {}
_BlandChromatin = {}
_NormalNucleoli = {}
_Mitoses = {}
_Class = {}

ClumpThickness = column_pipeline("ClumpThickness", NumberSelector, _Identity,
                                 _ClumpThickness)
CellSize = column_pipeline("CellSize", NumberSelector, _Identity, _CellSize)
CellShape = column_pipeline("CellShape", NumberSelector, _Identity, _CellShape)
MaginalAdhesion = column_pipeline("MarginalAdhesion", NumberSelector,
                                  _Identity, _MaginalAdhesion)
EpithelialSize = column_pipeline("EpithelialSize", NumberSelector, _Identity,
                                 _EpithelialSize)
BareNuclei = column_pipeline("BareNuclei", NumberSelector, _Identity,
                             _BareNuclei)
BlandChromatin = column_pipeline("BlandChromatin", NumberSelector, _Identity,
                                 _BlandChromatin)
NormalNucleoli = column_pipeline("NormalNucleoli", NumberSelector, _Identity,
                                 _NormalNucleoli)
Mitoses = column_pipeline("Mitoses", NumberSelector, _Identity, _Mitoses)
Class = column_pipeline("Class", NumberSelector, _Identity, _Class)
Esempio n. 4
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.ColumnSelector import ColumnSelector
from Helper.Transform.Selector.TypeSelector import TypeSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from Helper.Load.classification import Classification
loadC = Classification("Data", "letter.dat", "letters-name.txt")

from sklearn.preprocessing import StandardScaler
from Helper.Transform.Custom.nominal import _Identity

continuous_ = {}
outputs_ = {}
inputs_number = column_pipeline(loadC.inputs, ColumnSelector, StandardScaler,
                                continuous_)
outputs = column_pipeline(*loadC.outputs, TextSelector, _Identity, outputs_)

Column_ = {"inputs": inputs_number, "output": outputs}
Esempio n. 5
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from Helper.Transform.Custom.nominal import _LabelBinarizer

from sklearn.preprocessing import KBinsDiscretizer

_Age = {"n_bins": 15, "encode": "ordinal", "strategy": "uniform"}
_Year = {"n_bins": 10, "encode": "ordinal", "strategy": "uniform"}
_Positive = {"n_bins": 5, "encode": "ordinal", "strategy": "uniform"}
_Survival = {}

Age = column_pipeline("Age", NumberSelector, KBinsDiscretizer, _Age)
Year = column_pipeline("Year", NumberSelector, KBinsDiscretizer, _Year)
Positive = column_pipeline("Positive", NumberSelector, KBinsDiscretizer,
                           _Positive)
Survival = column_pipeline("Survival", TextSelector, _LabelBinarizer,
                           _Survival)

Column_pipeline_Dictionary = {
    "Age": Age,
    "Year": Year,
    "Positive": Positive,
    "Survival": Survival
}
Esempio n. 6
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from Helper.Transform.Custom.nominal import _LabelBinarizer, _Identity

_Led1 = {}
_Led2 = {}
_Led3 = {}
_Led4 = {}
_Led5 = {}
_Led6 = {}
_Led7 = {}
_number = {}

Led1 = column_pipeline("Led1", NumberSelector, _LabelBinarizer, _Led1)
Led2 = column_pipeline("Led2", NumberSelector, _LabelBinarizer, _Led2)
Led3 = column_pipeline("Led3", NumberSelector, _LabelBinarizer, _Led3)
Led4 = column_pipeline("Led4", NumberSelector, _LabelBinarizer, _Led4)
Led5 = column_pipeline("Led5", NumberSelector, _LabelBinarizer, _Led5)
Led6 = column_pipeline("Led6", NumberSelector, _LabelBinarizer, _Led6)
Led7 = column_pipeline("Led7", NumberSelector, _LabelBinarizer, _Led7)
number = column_pipeline("Number", NumberSelector, _Identity, _number)

Column_pipeline_Dictionary = {
    "Led1": Led1,
    "Led2": Led2,
    "Led3": Led3,
    "Led4": Led4,
    "Led5": Led5,
    "Led6": Led6,
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

from sklearn.preprocessing import StandardScaler
from Helper.Transform.Custom.nominal import _Identity

SepalLength_ = {}
SepalWidth_ = {}
PetalLength_ = {}
PetalWidth_ = {}
Class_ = {}

SepalLength = column_pipeline("SepalLength", NumberSelector, StandardScaler,
                              SepalLength_)
SepalWidth = column_pipeline("SepalWidth", NumberSelector, StandardScaler,
                             SepalWidth_)
PetalLength = column_pipeline("PetalLength", NumberSelector, StandardScaler,
                              PetalLength_)
PetalWidth = column_pipeline("PetalWidth", NumberSelector, StandardScaler,
                             PetalWidth_)
Class = column_pipeline("Class", NumberSelector, _Identity, Class_)

Column_pipeline_Dictionary = {
    "SepalLength": SepalLength,
    "SepalWidth": SepalWidth,
    "PetalLength": PetalLength,
    "PetalWidth": PetalWidth,
    "Class": Class
}
Esempio n. 8
0
from Helper.Transform.Selector.NumberSelector import NumberSelector
from Helper.Transform.Selector.ColumnSelector import ColumnSelector 
from Helper.Transform.Selector.TypeSelector import TypeSelector
from Helper.Transform.Selector.TextSelector import TextSelector
from Helper.Transform.Columns.column_pipeline import column_pipeline

# is this a class? Hyperparameters too? I think these should be classes that take in a load
#   object or a transform object.
name = "connect-4"

from Helper.Load.classification import Classification
loadC = Classification("Data", f"{name}.dat", f"{name}-names.txt")

from sklearn.preprocessing import OrdinalEncoder
from Helper.Transform.Custom.nominal import _Identity

continuous_ = {}
outputs_ = {}
inputs_number = column_pipeline(loadC.inputs, ColumnSelector, OrdinalEncoder, continuous_)
outputs = column_pipeline(*loadC.outputs, TextSelector, _Identity, outputs_)

Column_ = {
    "inputs":inputs_number,
    "output":outputs
}