Esempio n. 1
0
    def stageData(self, m):

        y0 = float(self.keywords.get(
            "y0", 1994.))  # [yr] beginning year to include in analysis
        yf = float(self.keywords.get(
            "yf", 2007.))  # [yr] end year to include in analysis

        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars)
        #if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        mod = m.extractTimeSeries(self.variable,
                                  alt_vars=self.alternate_vars,
                                  expression=self.derived,
                                  initial_time=(y0 - 1850) * 365,
                                  final_time=(yf - 1850) * 365,
                                  lats=None if obs.spatial else obs.lat,
                                  lons=None if obs.spatial else obs.lon)

        # remove the time dimension
        obs = obs.integrateInTime(mean=True)
        mod = mod.integrateInTime(mean=True)

        return obs, mod
Esempio n. 2
0
    def stageData(self, m):

        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars)
        t0 = obs.time_bnds[0, 0]
        tf = obs.time_bnds[-1, 1]
        climatology = False if obs.cbounds is None else True
        if climatology:
            t0 = (obs.cbounds[0] - 1850) * 365.
            tf = (obs.cbounds[1] + 1 - 1850) * 365.
        mod = m.extractTimeSeries(self.variable,
                                  alt_vars=self.alternate_vars,
                                  expression=self.derived,
                                  initial_time=t0,
                                  final_time=tf,
                                  lats=None if obs.spatial else obs.lat,
                                  lons=None if obs.spatial else obs.lon)
        if obs.layered and not mod.layered:
            obs = obs.integrateInDepth(z0=0, zf=0.1, mean=True)
        if climatology:
            mod = mod.annualCycle()
            mod.time = obs.time.copy()
            mod.time_bnds = obs.time_bnds.copy()
        obs, mod = il.MakeComparable(obs,
                                     mod,
                                     mask_ref=True,
                                     clip_ref=True,
                                     extents=self.extents,
                                     logstring="[%s][%s]" %
                                     (self.longname, m.name))

        return obs, mod
Esempio n. 3
0
    def stageData(self, m):

        energy_threshold = float(self.keywords.get("energy_threshold", 20.))
        sh = Variable(filename=os.path.join(os.environ["ILAMB_ROOT"],
                                            "DATA/sh/GBAF/sh_0.5x0.5.nc"),
                      variable_name="sh")
        le = Variable(filename=os.path.join(os.environ["ILAMB_ROOT"],
                                            "DATA/le/GBAF/le_0.5x0.5.nc"),
                      variable_name="le")
        obs = Variable(name=self.variable,
                       unit="1",
                       data=np.ma.masked_array(
                           le.data / (le.data + sh.data),
                           mask=((le.data < 0) + (sh.data < 0) +
                                 ((le.data + sh.data) < energy_threshold))),
                       lat=sh.lat,
                       lat_bnds=sh.lat_bnds,
                       lon=sh.lon,
                       lon_bnds=sh.lon_bnds,
                       time=sh.time,
                       time_bnds=sh.time_bnds)

        if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        sh = m.extractTimeSeries("hfss",
                                 initial_time=obs.time_bnds[0, 0],
                                 final_time=obs.time_bnds[-1, 1],
                                 lats=None if obs.spatial else obs.lat,
                                 lons=None if obs.spatial else obs.lon)
        le = m.extractTimeSeries("hfls",
                                 initial_time=obs.time_bnds[0, 0],
                                 final_time=obs.time_bnds[-1, 1],
                                 lats=None if obs.spatial else obs.lat,
                                 lons=None if obs.spatial else obs.lon)
        mod = Variable(name=self.variable,
                       unit="1",
                       data=np.ma.masked_array(
                           le.data / (le.data + sh.data),
                           mask=((le.data < 0) + (sh.data < 0) +
                                 ((le.data + sh.data) < energy_threshold))),
                       lat=sh.lat,
                       lat_bnds=sh.lat_bnds,
                       lon=sh.lon,
                       lon_bnds=sh.lon_bnds,
                       time=sh.time,
                       time_bnds=sh.time_bnds)

        obs, mod = il.MakeComparable(obs,
                                     mod,
                                     mask_ref=True,
                                     clip_ref=True,
                                     logstring="[%s][%s]" %
                                     (self.longname, m.name))

        return obs, mod
Esempio n. 4
0
    def stageData(self, m):
        """Extracts model data and transforms it to make it comparable to the runoff dataset.

        Parameters
        ----------
        m : ILAMB.ModelResult.ModelResult
            the model result context

        Returns
        -------
        obs : ILAMB.Variable.Variable
            the variable context associated with the observational dataset
        mod : ILAMB.Variable.Variable
            the variable context associated with the model result
        """
        # Extract the observational data for basins
        obs = Variable(filename=self.source,
                       variable_name=self.variable).convert("mm d-1")

        # Extract the globally gridded runoff
        mod = m.extractTimeSeries(self.variable,
                                  alt_vars=self.alternate_vars,
                                  initial_time=obs.time_bnds[0, 0],
                                  final_time=obs.time_bnds[-1, 1])

        # We want annual mean, not monthly mean
        years = np.asarray([obs.time_bnds[::12, 0], obs.time_bnds[11::12,
                                                                  1]]).T
        obs = obs.coarsenInTime(years)
        mod = mod.coarsenInTime(years)
        obs.name = "runoff"
        mod.name = "runoff"

        # Operate on model data to compute mean runoff values in each basin.
        data = np.ma.zeros(obs.data.shape)
        for i, basin in enumerate(self.basins):
            b = il.ClipTime(mod.integrateInSpace(region=basin, mean=True),
                            obs.time_bnds[0, 0],
                            obs.time_bnds[-1, 1]).convert(obs.unit)
            data[:, i] = b.data

        # Create a variable to return for the model
        mod = Variable(name=obs.name,
                       unit=obs.unit,
                       data=np.ma.masked_array(data, mask=obs.data.mask),
                       time=obs.time,
                       time_bnds=obs.time_bnds,
                       ndata=obs.ndata,
                       lat=obs.lat,
                       lat_bnds=obs.lat_bnds,
                       lon=obs.lon,
                       lon_bnds=obs.lon_bnds)
        return obs, mod
Esempio n. 5
0
def GetSlope(v):
    # loop over unmasked cells and compute slope wrt depth
    def _dindx(v, S0=200, Sc=1000):
        # find the index for 200 and 1000 m
        dZ = np.asarray(getattr(v, 'depth'))
        i0 = np.argmin(abs(dZ - S0))
        ic = np.argmin(abs(dZ - Sc))
        vdiff = dZ[ic] - dZ[i0]
        print('level {:2d}-{:2d} in {:6.2f}-{:6.2f}m time is {}'.format(
            i0, ic, dZ[i0], dZ[ic], v.time))
        return i0, ic, vdiff

    i0, ic, vdiff = _dindx(v)
    with np.errstate(under='ignore'):
        # dTdZ = (v.data[i0,...]-v.data[ic,...])/vdiff*1e3
        dTdZ = sc_fit(v)
    dTdZ.shape = (1, ) + dTdZ.shape

    slope = Variable(time=np.asarray([0.5]),
                     time_bnds=np.asarray([[0., 1.]]),
                     data=dTdZ,
                     lat=v.lat,
                     lat_bnds=v.lat_bnds,
                     lon=v.lon,
                     lon_bnds=v.lon_bnds,
                     unit='1e-3 degC/m')
    return slope
Esempio n. 6
0
    def _extendSitesToMap(self, var):
        """A local function to extend site data to the basins.
        
        Parameters
        ----------
        var : ILAMB.Variable.Variable
            the site-based variable we wish to extend to basins

        Returns
        -------
        extended : ILAMB.Variable.Variable
            the spatial variable which is the extended version of the
            input variable
        """

        # determine the global mask
        global_mask = None
        global_data = None
        for i, basin in enumerate(self.basins):
            name, lat, lon, mask = Regions._regions[basin]
            keep = (mask == False)
            if global_mask is None:
                global_mask = np.copy(mask)
                global_data = keep * var.data[i]
            else:
                global_mask *= mask
                global_data += keep * var.data[i]
        return Variable(name=var.name,
                        unit=var.unit,
                        data=np.ma.masked_array(global_data, mask=global_mask),
                        lat=lat,
                        lon=lon)
Esempio n. 7
0
    def stageData(self, m):

        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars,
                       convert_calendar=False)
        if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        # Try to extract a commensurate quantity from the model
        mod = m.extractTimeSeries(self.variable,
                                  alt_vars=self.alternate_vars,
                                  expression=self.derived,
                                  convert_calendar=False,
                                  lats=None if obs.spatial else obs.lat,
                                  lons=None if obs.spatial else obs.lon)

        # When we make things comparable, sites can get pruned, we
        # also need to prune the site labels
        lat = np.copy(obs.lat)
        lon = np.copy(obs.lon)
        obs, mod = il.MakeComparable(obs,
                                     mod,
                                     clip_ref=False,
                                     prune_sites=True,
                                     allow_diff_times=True)

        # Some datasets / models return data in UTC, others are local
        # time. Try to correct by looking at the time of maximum
        # incident radiation.
        try:
            inc = Variable(filename=self.source,
                           variable_name="LW_IN",
                           convert_calendar=False)
            obs.tmax = getTimeOfDailyMaximum(inc)
        except:
            obs.tmax = 12.
        try:
            inc = m.extractTimeSeries("FSDS",
                                      convert_calendar=False,
                                      lats=None if obs.spatial else obs.lat,
                                      lons=None if obs.spatial else obs.lon)
            mod.tmax = getTimeOfDailyMaximum(inc)
        except:
            mod.tmax = 12.

        return obs, mod
Esempio n. 8
0
    def modelPlots(self, m):

        # some of the plots can be generated using the standard
        # routine, with some modifications
        super(ConfRunoff, self).modelPlots(m)

        #
        bname = os.path.join(self.output_path, "%s_Benchmark.nc" % (self.name))
        fname = os.path.join(self.output_path,
                             "%s_%s.nc" % (self.name, m.name))

        # get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]

        if not os.path.isfile(bname): return
        if not os.path.isfile(fname): return
        obs = Variable(filename=bname,
                       variable_name="runoff",
                       groupname="MeanState")
        mod = Variable(filename=fname,
                       variable_name="runoff",
                       groupname="MeanState")
        for i, basin in enumerate(self.basins):

            page.addFigure("Spatially integrated regional mean",
                           basin,
                           "MNAME_global_%s.png" % basin,
                           basin,
                           False,
                           longname=basin)

            fig, ax = plt.subplots(figsize=(6.8, 2.8), tight_layout=True)
            ax.plot(obs.time / 365 + 1850,
                    obs.data[:, i],
                    lw=2,
                    color='k',
                    alpha=0.5)
            ax.plot(mod.time / 365 + 1850, mod.data[:, i], lw=2, color=m.color)
            ax.grid()
            ax.set_ylabel(post.UnitStringToMatplotlib(obs.unit))
            fig.savefig(
                os.path.join(self.output_path,
                             "%s_global_%s.png" % (m.name, basin)))
            plt.close()
Esempio n. 9
0
def ReadBenchmark(filname, variable_name, alternate_vars="", study_limits=[]):
    obs = Variable(filename       = filname,
                variable_name  = variable_name,
                alternate_vars = alternate_vars,
                t0 = None if len(study_limits) != 2 else study_limits[0],
                tf = None if len(study_limits) != 2 else study_limits[1])
    if obs.time is None: raise il.NotTemporalVariable()
    return obs
Esempio n. 10
0
 def _profileScore(ref, com, region):
     db = np.unique(
         np.hstack(
             [np.unique(ref.depth_bnds),
              np.unique(com.depth_bnds)]))
     d = 0.5 * (db[:-1] + db[1:])
     w = np.diff(db)
     r = ref.data[np.argmin(np.abs(d[:, np.newaxis] - ref.depth),
                            axis=1)]
     c = com.data[np.argmin(np.abs(d[:, np.newaxis] - com.depth),
                            axis=1)]
     err = np.sqrt((((r - c)**2) * w).sum() /
                   ((r**2) * w).sum())  # relative L2 error
     return Variable(name="Profile Score %s" % region,
                     unit="1",
                     data=np.exp(-err))
Esempio n. 11
0
def _albedo(dn, up, vname, energy_threshold):
    mask = (dn.data < energy_threshold)
    dn.data = np.ma.masked_array(dn.data, mask=mask)
    up.data = np.ma.masked_array(up.data, mask=mask)
    np.seterr(over='ignore', under='ignore')
    al = np.ma.masked_array(up.data / dn.data, mask=mask)
    np.seterr(over='warn', under='warn')
    al = Variable(name=vname,
                  unit="1",
                  data=al,
                  lat=dn.lat,
                  lat_bnds=dn.lat_bnds,
                  lon=dn.lon,
                  lon_bnds=dn.lon_bnds,
                  time=dn.time,
                  time_bnds=dn.time_bnds)
    return dn, up, al
    def stageData(self, m):

        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars)
        if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        # Try to extract a commensurate quantity from the model
        mod = m.extractTimeSeries(
            self.variable,
            alt_vars=self.alternate_vars,
            expression=self.derived,
            initial_time=obs.time_bnds[0, 0],
            final_time=obs.time_bnds[-1, 1],
            lats=None if obs.spatial else obs.lat,
            lons=None if obs.spatial else obs.lon).convert(obs.unit)
        return obs, mod
Esempio n. 13
0
def _evapfrac(sh, le, vname, energy_threshold):
    mask = ((le.data < 0) + (sh.data < 0) +
            ((le.data + sh.data) < energy_threshold))
    sh.data = np.ma.masked_array(sh.data, mask=mask)
    le.data = np.ma.masked_array(le.data, mask=mask)
    np.seterr(over='ignore', under='ignore')
    ef = np.ma.masked_array(le.data / (le.data + sh.data), mask=mask)
    np.seterr(over='warn', under='warn')
    ef = Variable(name=vname,
                  unit="1",
                  data=ef,
                  lat=sh.lat,
                  lat_bnds=sh.lat_bnds,
                  lon=sh.lon,
                  lon_bnds=sh.lon_bnds,
                  time=sh.time,
                  time_bnds=sh.time_bnds)
    return sh, le, ef
Esempio n. 14
0
    def __init__(self, **keywords):

        # Calls the regular constructor
        super(ConfPEcAn, self).__init__(**keywords)

        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars,
                       convert_calendar=False)
        self.years = np.asarray(
            [t.year for t in cftime.num2date(obs.time, "days since 1850-1-1")],
            dtype=int)
        self.years = np.unique(self.years)

        # Setup a html layout for generating web views of the results
        pages = []

        # Mean State page
        pages.append(post.HtmlPage("MeanState", "Mean State"))
        pages[-1].setHeader("CNAME / RNAME / MNAME")
        pages[-1].setSections([
            "Seasonal Diurnal Cycle",
        ] + ["%d" % y for y in self.years])
        pages.append(post.HtmlAllModelsPage("AllModels", "All Models"))
        pages[-1].setHeader("CNAME / RNAME")
        pages[-1].setSections([])
        pages[-1].setRegions(self.regions)
        pages.append(post.HtmlPage("DataInformation", "Data Information"))
        pages[-1].setSections([])
        pages[-1].text = "\n"
        with Dataset(self.source) as dset:
            for attr in dset.ncattrs():
                a = dset.getncattr(attr)
                if 'astype' in dir(a): a = a.astype('str')
                if 'encode' in dir(a): a = a.encode('ascii', 'ignore')
                pages[-1].text += "<p><b>&nbsp;&nbsp;%s:&nbsp;</b>%s</p>\n" % (
                    attr, a)
        self.layout = post.HtmlLayout(pages, self.longname)
Esempio n. 15
0
    def modelPlots(self, m):

        bname = "%s/%s_Benchmark.nc" % (self.output_path, self.name)
        fname = "%s/%s_%s.nc" % (self.output_path, self.name, m.name)
        if not os.path.isfile(bname): return
        if not os.path.isfile(fname): return

        # get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]
        page.priority = ["Beginning", "Ending", "Strength", "Score", "Overall"]

        for y in self.years:

            # ---------------------------------------------------------------- #

            plt.figure(figsize=(5, 5), tight_layout=True)
            has_data = False
            for name, color, alpha in zip([bname, fname], ['k', m.color],
                                          [0.6, 1.0]):
                try:
                    v = Variable(filename=name,
                                 variable_name="mag%d" % y,
                                 groupname="MeanState")
                    has_data = True
                except:
                    continue
                plt.polar(v.time / 365. * 2 * np.pi,
                          v.data,
                          '-',
                          color=color,
                          alpha=alpha,
                          lw=2)

            if has_data:
                plt.xticks(bnd_months[:-1] / 365. * 2 * np.pi, lbl_months)
                plt.ylim(0, self.limits["mag"])
                plt.savefig("%s/%s_mag%d.png" % (self.output_path, m.name, y))
                page.addFigure("%d" % y,
                               "mag%d" % y,
                               "MNAME_mag%d.png" % y,
                               side="DIURNAL MAGNITUDE",
                               legend=False)
            plt.close()

            # ---------------------------------------------------------------- #

            fig, ax = plt.subplots(figsize=(8, 5), tight_layout=True)
            has_data = False
            unit = ""
            for name, color, alpha, lbl in zip([bname, fname], ['k', m.color],
                                               [0.6, 1.0],
                                               ['Benchmark', m.name]):
                try:
                    v = Variable(filename=name,
                                 variable_name="cycle%d" % y,
                                 groupname="MeanState")
                    has_data = True
                    unit = v.unit
                except:
                    continue
                v.plot(ax, color=color, alpha=alpha, lw=2, label=lbl)
            if has_data:
                ax.set_xticks(np.linspace(0, 1, 9) / 365 + 1850)
                ax.set_xticklabels(
                    ["%2d:00" % t for t in np.linspace(0, 24, 9)])
                ax.set_ylim(self.limits['cycle']['min'],
                            self.limits['cycle']['max'])
                ax.grid(True)
                ax.set_ylabel(post.UnitStringToMatplotlib(unit))
                ax.set_xlabel("local time")
                ax.legend(bbox_to_anchor=(0, 1.005, 1, 0.25),
                          loc='lower left',
                          mode='expand',
                          ncol=2,
                          borderaxespad=0,
                          frameon=False)
                plt.savefig("%s/%s_cycle%d.png" %
                            (self.output_path, m.name, y))
                page.addFigure("%d" % y,
                               "cycle%d" % y,
                               "MNAME_cycle%d.png" % y,
                               side="SEASONAL DIURNAL CYCLE",
                               legend=False)
            plt.close()
    def confront(self, m):

        # get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]

        # Grab the data
        obs, mod = self.stageData(m)
        odata, ot, otb = DiurnalReshape(obs)
        mdata, mt, mtb = DiurnalReshape(mod)

        n = len(self.lbls)
        obs_amp = np.zeros(n)
        mod_amp = np.zeros(n)
        amp_score = np.zeros(n)
        obs_phase = np.zeros(n)
        mod_phase = np.zeros(n)
        phase_score = np.zeros(n)
        for site in range(n):

            # Site name
            lbl = self.lbls[site]
            skip = False

            # Observational diurnal cycle
            tobs = ot + obs.lon[site] / 360
            vobs = odata[..., site]
            vobs = np.roll(vobs, -tobs.searchsorted(0), axis=1)
            tobs = np.roll(tobs, -tobs.searchsorted(0))
            tobs += (tobs < 0)
            aobs = (vobs.max(axis=1) - vobs.min(axis=1)).mean()
            vobs = vobs.mean(axis=0)
            if vobs.size == vobs.mask.sum(): skip = True
            if not skip:
                acyc = CubicSpline(np.hstack([tobs, tobs[0] + 1.]),
                                   np.hstack([vobs, vobs[0]]),
                                   bc_type="periodic")
                troot = acyc.derivative().solve()
                troot = troot[(troot >= 0) * (troot <= 1.)]
                otmx = troot[acyc(troot).argmax()]

            # Model diurnal cycle
            tmod = mt + mod.lon[site] / 360
            vmod = mdata[..., site]
            vmod = np.roll(vmod, -tmod.searchsorted(0), axis=1)
            tmod = np.roll(tmod, -tmod.searchsorted(0))
            tmod += (tmod < 0)
            amod = (vmod.max(axis=1) - vmod.min(axis=1)).mean()
            vmod = vmod.mean(axis=0)
            mcyc = CubicSpline(np.hstack([tmod, tmod[0] + 1.]),
                               np.hstack([vmod, vmod[0]]),
                               bc_type="periodic")
            troot = mcyc.derivative().solve()
            troot = troot[(troot >= 0) * (troot <= 1.)]
            mtmx = troot[mcyc(troot).argmax()]

            # Scalars and scores
            if skip:
                obs_amp[site] = np.nan
                obs_phase[site] = np.nan
                amp_score[site] = np.nan
                phase_score[site] = np.nan
            else:
                obs_amp[site] = aobs
                obs_phase[site] = otmx
                amp_score[site] = np.exp(-np.abs(amod - aobs) / aobs)
                phase_score[site] = 1 - np.abs(mtmx - otmx) / 0.5
            mod_amp[site] = amod
            mod_phase[site] = mtmx

            # Plot
            ts = np.linspace(0, 1, 100)
            fig, ax = plt.subplots(figsize=(6.8, 2.8), tight_layout=True)
            if not skip:
                ax.plot(tobs, vobs, 'o', mew=0, markersize=3, color='k')
                ax.plot(ts, acyc(ts), '-', color='k')
                ax.plot(otmx, acyc(otmx), 'o', mew=0, markersize=5, color='k')
            ax.plot(tmod, vmod, 'o', mew=0, markersize=3, color=m.color)
            ax.plot(ts, mcyc(ts), '-', color=m.color)
            ax.plot(mtmx, mcyc(mtmx), 'o', mew=0, markersize=5, color=m.color)
            xt = np.arange(25)[::3]
            xtl = ["%02d:00" % xx for xx in xt]
            ax.set_xticks(xt / 24.)
            ax.set_xticklabels(xtl)
            ax.grid(True)
            ax.set_xlabel("Mean solar time")
            ax.set_ylabel("[%s]" % obs.unit)
            plt.savefig(
                os.path.join(self.output_path,
                             "%s_diurnal_%s.png" % (m.name, lbl)))
            plt.close()

            obs_amp = np.ma.masked_invalid(obs_amp)
            obs_phase = np.ma.masked_invalid(obs_phase)
            amp_score = np.ma.masked_invalid(amp_score)
            phase_score = np.ma.masked_invalid(phase_score)

            results = Dataset(os.path.join(self.output_path,
                                           "%s_%s.nc" % (self.name, m.name)),
                              mode="w")
            results.setncatts({"name": m.name, "color": m.color})
            Variable(name="Amplitude global",
                     unit=obs.unit,
                     data=mod_amp.mean()).toNetCDF4(results, group="MeanState")
            Variable(name="Max time global",
                     unit="h",
                     data=24 * mod_phase.mean()).toNetCDF4(results,
                                                           group="MeanState")
            Variable(name="Amplitude Score global",
                     unit="1",
                     data=amp_score.mean()).toNetCDF4(results,
                                                      group="MeanState")
            Variable(name="Phase Score global",
                     unit="1",
                     data=phase_score.mean()).toNetCDF4(results,
                                                        group="MeanState")
            results.close()
            if self.master:
                results = Dataset(os.path.join(self.output_path,
                                               "%s_Benchmark.nc" % self.name),
                                  mode="w")
                results.setncatts({
                    "name": "Benchmark",
                    "color": np.asarray([0.5, 0.5, 0.5])
                })
                Variable(name="Amplitude global",
                         unit=obs.unit,
                         data=obs_amp.mean()).toNetCDF4(results,
                                                        group="MeanState")
                Variable(name="Max time global",
                         unit="h",
                         data=24 * obs_phase.mean()).toNetCDF4(
                             results, group="MeanState")
                results.close()
Esempio n. 17
0
    def compositePlots(self):

        if not self.master: return

        # get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]

        # composite profile plot
        f1 = {}
        a1 = {}
        u1 = None
        for fname in glob.glob("%s/*.nc" % self.output_path):
            with Dataset(fname) as dset:
                if "MeanState" not in dset.groups: continue
                group = dset.groups["MeanState"]
                variables = getVariableList(group)
                for region in self.regions:

                    vname = "profile_of_%s_over_%s" % (self.variable, region)
                    if vname in variables:
                        if not f1.has_key(region):
                            f1[region], a1[region] = plt.subplots(
                                figsize=(5, 5), tight_layout=True)
                        var = Variable(filename=fname,
                                       variable_name=vname,
                                       groupname="MeanState")
                        u1 = var.unit
                        page.addFigure("Mean regional depth profiles",
                                       "profile",
                                       "RNAME_profile.png",
                                       side="REGIONAL MEAN PROFILE",
                                       legend=False)
                        a1[region].plot(var.data,
                                        var.depth,
                                        '-',
                                        color=dset.getncattr("color"))
        for key in f1.keys():
            a1[key].set_xlabel("%s [%s]" % (self.variable, u1))
            a1[key].set_ylabel("depth [m]")
            a1[key].invert_yaxis()
            f1[key].savefig("%s/%s_profile.png" % (self.output_path, key))
        plt.close()

        # spatial distribution Taylor plot
        models = []
        colors = []
        corr = {}
        std = {}
        has_std = False
        for fname in glob.glob("%s/*.nc" % self.output_path):
            with Dataset(fname) as dset:
                models.append(dset.getncattr("name"))
                colors.append(dset.getncattr("color"))
                if "MeanState" not in dset.groups: continue
                dset = dset.groups["MeanState"]
                for region in self.regions:
                    if not std.has_key(region): std[region] = []
                    if not corr.has_key(region): corr[region] = []
                    key = []
                    if "scalars" in dset.groups:
                        key = [
                            v for v in dset.groups["scalars"].variables.keys()
                            if ("Spatial Distribution Score" in v
                                and region in v)
                        ]
                    if len(key) > 0:
                        has_std = True
                        sds = dset.groups["scalars"].variables[key[0]]
                        corr[region].append(sds.getncattr("R"))
                        std[region].append(sds.getncattr("std"))

        if has_std:

            # Legends
            def _alphabeticalBenchmarkFirst(key):
                key = key[0].upper()
                if key == "BENCHMARK": return 0
                return key

            tmp = sorted(zip(models, colors), key=_alphabeticalBenchmarkFirst)
            fig, ax = plt.subplots()
            for model, color in tmp:
                ax.plot(0, 0, 'o', mew=0, ms=8, color=color, label=model)
            handles, labels = ax.get_legend_handles_labels()
            plt.close()
            ncol = np.ceil(float(len(models)) / 11.).astype(int)
            fig, ax = plt.subplots(figsize=(3. * ncol, 2.8), tight_layout=True)
            ax.legend(handles,
                      labels,
                      loc="upper right",
                      ncol=ncol,
                      fontsize=10,
                      numpoints=1)
            ax.axis('off')
            fig.savefig("%s/legend_spatial_variance.png" % self.output_path)
            plt.close()

            page.addFigure("Period mean at surface",
                           "spatial_variance",
                           "RNAME_spatial_variance.png",
                           side="SPATIAL TAYLOR DIAGRAM",
                           legend=False)
            page.addFigure("Period mean at surface",
                           "legend_spatial_variance",
                           "legend_spatial_variance.png",
                           side="MODEL COLORS",
                           legend=False)
            if "Benchmark" in models: colors.pop(models.index("Benchmark"))
            for region in self.regions:
                if not (std.has_key(region) and corr.has_key(region)): continue
                if len(std[region]) != len(corr[region]): continue
                if len(std[region]) == 0: continue
                fig = plt.figure(figsize=(6.0, 6.0))
                post.TaylorDiagram(np.asarray(std[region]),
                                   np.asarray(corr[region]), 1.0, fig, colors)
                fig.savefig("%s/%s_spatial_variance.png" %
                            (self.output_path, region))
                plt.close()
Esempio n. 18
0
    def modelPlots(self, m):
        def _fheight(region):
            if region in ["arctic", "southern"]: return 6.8
            return 2.8

        bname = "%s/%s_Benchmark.nc" % (self.output_path, self.name)
        fname = "%s/%s_%s.nc" % (self.output_path, self.name, m.name)
        if not os.path.isfile(bname): return
        if not os.path.isfile(fname): return

        # get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]

        with Dataset(fname) as dataset:
            group = dataset.groups["MeanState"]
            variables = getVariableList(group)
            color = dataset.getncattr("color")

            vname = "timeint_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=fname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "timeint",
                               "MNAME_RNAME_timeint.png",
                               side="MODEL SURFACE MEAN",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=self.limits["timeint"]["min"],
                             vmax=self.limits["timeint"]["max"],
                             cmap=self.cmap,
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/%s_%s_timeint.png" %
                                (self.output_path, m.name, region))
                    plt.close()

            vname = "bias_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=fname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "bias",
                               "MNAME_RNAME_bias.png",
                               side="SURFACE MEAN BIAS",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=self.limits["bias"]["min"],
                             vmax=self.limits["bias"]["max"],
                             cmap="seismic",
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/%s_%s_bias.png" %
                                (self.output_path, m.name, region))
                    plt.close()

            vname = "biasscore_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=fname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "biasscore",
                               "MNAME_RNAME_biasscore.png",
                               side="SURFACE MEAN BIAS SCORE",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=0,
                             vmax=1,
                             cmap="RdYlGn",
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/%s_%s_biasscore.png" %
                                (self.output_path, m.name, region))
                    plt.close()

            vname = "rmse_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=fname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "rmse",
                               "MNAME_RNAME_rmse.png",
                               side="SURFACE MEAN RMSE",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=self.limits["rmse"]["min"],
                             vmax=self.limits["rmse"]["max"],
                             cmap="YlOrRd",
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/%s_%s_rmse.png" %
                                (self.output_path, m.name, region))
                    plt.close()

            vname = "rmsescore_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=fname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "rmsescore",
                               "MNAME_RNAME_rmsescore.png",
                               side="SURFACE MEAN RMSE SCORE",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=0,
                             vmax=1,
                             cmap="RdYlGn",
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/%s_%s_rmsescore.png" %
                                (self.output_path, m.name, region))
                    plt.close()

            for region in self.regions:

                vname = "timelonint_of_%s_over_%s" % (self.variable, region)
                if vname in variables:
                    var = Variable(filename=fname,
                                   variable_name=vname,
                                   groupname="MeanState")
                    if region == "global":
                        page.addFigure(
                            "Mean regional depth profiles",
                            "timelonint",
                            "MNAME_RNAME_timelonint.png",
                            side="MODEL DEPTH PROFILE",
                            legend=True,
                            longname="Time/longitude averaged profile")
                    fig, ax = plt.subplots(figsize=(6.8, 2.8),
                                           tight_layout=True)
                    l = np.hstack([var.lat_bnds[:, 0], var.lat_bnds[-1, 1]])
                    d = np.hstack(
                        [var.depth_bnds[:, 0], var.depth_bnds[-1, 1]])
                    ind = np.all(var.data.mask, axis=0)
                    ind = np.ma.masked_array(range(ind.size),
                                             mask=ind,
                                             dtype=int)
                    b = ind.min()
                    e = ind.max() + 1
                    ax.pcolormesh(
                        l[b:(e + 1)],
                        d,
                        var.data[:, b:e],
                        vmin=self.limits["timelonint"]["global"]["min"],
                        vmax=self.limits["timelonint"]["global"]["max"],
                        cmap=self.cmap)
                    ax.set_xlabel("latitude")
                    ax.set_ylim((d.max(), d.min()))
                    ax.set_ylabel("depth [m]")
                    fig.savefig("%s/%s_%s_timelonint.png" %
                                (self.output_path, m.name, region))
                    plt.close()

        if not self.master: return

        with Dataset(bname) as dataset:
            group = dataset.groups["MeanState"]
            variables = getVariableList(group)
            color = dataset.getncattr("color")

            vname = "timeint_surface_%s" % self.variable
            if vname in variables:
                var = Variable(filename=bname,
                               variable_name=vname,
                               groupname="MeanState")
                page.addFigure("Period mean at surface",
                               "benchmark_timeint",
                               "Benchmark_RNAME_timeint.png",
                               side="BENCHMARK SURFACE MEAN",
                               legend=True)
                for region in self.regions:
                    fig = plt.figure()
                    ax = fig.add_axes([0.06, 0.025, 0.88, 0.965])
                    var.plot(ax,
                             region=region,
                             vmin=self.limits["timeint"]["min"],
                             vmax=self.limits["timeint"]["max"],
                             cmap=self.cmap,
                             land=0.750,
                             water=0.875)
                    fig.savefig("%s/Benchmark_%s_timeint.png" %
                                (self.output_path, region))
                    plt.close()

            for region in self.regions:

                vname = "timelonint_of_%s_over_%s" % (self.variable, region)
                if vname in variables:
                    var = Variable(filename=bname,
                                   variable_name=vname,
                                   groupname="MeanState")
                    if region == "global":
                        page.addFigure(
                            "Mean regional depth profiles",
                            "benchmark_timelonint",
                            "Benchmark_RNAME_timelonint.png",
                            side="BENCHMARK DEPTH PROFILE",
                            legend=True,
                            longname="Time/longitude averaged profile")
                    fig, ax = plt.subplots(figsize=(6.8, 2.8),
                                           tight_layout=True)
                    l = np.hstack([var.lat_bnds[:, 0], var.lat_bnds[-1, 1]])
                    d = np.hstack(
                        [var.depth_bnds[:, 0], var.depth_bnds[-1, 1]])
                    ind = np.all(var.data.mask, axis=0)
                    ind = np.ma.masked_array(range(ind.size),
                                             mask=ind,
                                             dtype=int)
                    b = ind.min()
                    e = ind.max() + 1
                    ax.pcolormesh(
                        l[b:(e + 1)],
                        d,
                        var.data[:, b:e],
                        vmin=self.limits["timelonint"]["global"]["min"],
                        vmax=self.limits["timelonint"]["global"]["max"],
                        cmap=self.cmap)
                    ax.set_xlabel("latitude")
                    ax.set_ylim((d.max(), d.min()))
                    ax.set_ylabel("depth [m]")
                    fig.savefig("%s/Benchmark_%s_timelonint.png" %
                                (self.output_path, region))
                    plt.close()
Esempio n. 19
0
    def modelPlots(self, m):

        # Check that the required intermediate files are present
        bname = "%s/%s_Benchmark.nc" % (self.output_path, self.name)
        fname = "%s/%s_%s.nc" % (self.output_path, self.name, m.name)
        if not os.path.isfile(bname): return
        if not os.path.isfile(fname): return

        # Get the HTML page
        page = [
            page for page in self.layout.pages if "MeanState" in page.name
        ][0]

        # Read variables from the datafiles
        obs = Variable(filename=bname,
                       variable_name="co2",
                       groupname="MeanState")
        mod = Variable(filename=fname,
                       variable_name="co2",
                       groupname="MeanState")
        ocyc = Variable(filename=bname,
                        variable_name="cycle",
                        groupname="MeanState")
        mcyc = Variable(filename=fname,
                        variable_name="cycle",
                        groupname="MeanState")
        oiav = Variable(filename=bname,
                        variable_name="iav",
                        groupname="MeanState")
        miav = Variable(filename=fname,
                        variable_name="iav",
                        groupname="MeanState")
        ocycf = Variable(filename=bname,
                         variable_name="cycle_fine",
                         groupname="MeanState")
        mcycf = Variable(filename=fname,
                         variable_name="cycle_fine",
                         groupname="MeanState")
        omaxp = Variable(filename=bname,
                         variable_name="maxp",
                         groupname="MeanState")
        ominp = Variable(filename=bname,
                         variable_name="minp",
                         groupname="MeanState")
        oamp = Variable(filename=bname,
                        variable_name="amp",
                        groupname="MeanState")
        mmaxp = Variable(filename=fname,
                         variable_name="maxp",
                         groupname="MeanState")
        mminp = Variable(filename=fname,
                         variable_name="minp",
                         groupname="MeanState")
        mamp = Variable(filename=fname,
                        variable_name="amp",
                        groupname="MeanState")
        t = np.linspace(0, 365, 366)

        # Create an index for ordering sites by descending latitude
        sord = np.argsort(obs.lat)[::-1]
        inds = np.asarray(range(len(self.lbls)), dtype=int)[sord]
        lbls = np.asarray(self.lbls)[sord]

        # Create sparkline plots of each site
        fig_height = 1.
        width_per_year = 5. / 28
        fig_dpi = 300.
        lw = 1.
        bndmonths = np.asarray(bnd_months, dtype=float) / 365.
        for site_id, site in zip(inds, lbls):

            # Initialize site info
            band = self.lat_bands.searchsorted(obs.lat[site_id])
            section = "Latitude Band %d to %d [ppm]" % (
                self.lat_bands[band - 1], self.lat_bands[band])
            vmin = min(obs.data[:, site_id].min(), mod.data[:, site_id].min())
            vmax = max(obs.data[:, site_id].max(), mod.data[:, site_id].max())
            tick = max(int(np.floor(min(vmax, abs(vmin)))), 1)
            yticks = [-tick, 0, tick]

            # How many years of data do we have?
            t0, tf = mod.time_bnds[(np.where(
                (mod.data[:, site_id] *
                 mod.time).mask == False)[0])[[0, -1]]] / 365. + 1850
            t0 = np.floor(t0[0])
            tf = np.ceil(tf[-1])
            xticks = [
                i for i in range(int(t0),
                                 int(tf) + 1) if str(i)[-1] == "0"
            ]

            # Plot setup
            fig_width0 = (5.) * width_per_year
            fig_width1 = (tf - t0) * width_per_year
            fig_width2 = (tf - t0) * width_per_year
            fig_width3 = (10.) * width_per_year
            fig, ax = plt.subplots(
                ncols=4,
                figsize=(fig_width0 + fig_width1 + fig_width2 + fig_width3,
                         fig_height),
                gridspec_kw={
                    'width_ratios':
                    [fig_width0, fig_width3, fig_width1, fig_width2]
                },
                tight_layout=True,
                dpi=fig_dpi)

            # Text only plot with the name and location of the site
            ax[0].text(0.5,
                       0.5,
                       "%s\n%d,%d" %
                       (site, obs.lat[site_id], obs.lon[site_id]),
                       horizontalalignment='center',
                       verticalalignment='center',
                       transform=ax[0].transAxes)
            ax[0].set_xticks([])
            ax[0].set_yticks([])
            ax[0].axis('off')

            # Plot the finely interpolated annual cycle, shade JFM and JJA
            ax[1].fill_between(bndmonths[[0, 3]], [vmin, vmin], [vmax, vmax],
                               color='k',
                               alpha=0.05,
                               lw=0)
            ax[1].fill_between(bndmonths[[6, 9]], [vmin, vmin], [vmax, vmax],
                               color='k',
                               alpha=0.05,
                               lw=0)
            ax[1].plot(ocyc.time / 365,
                       ocyc.data[:, site_id],
                       lw=1.5 * lw,
                       color='k',
                       alpha=0.35)
            ax[1].plot(mcyc.time / 365,
                       mcyc.data[:, site_id],
                       lw=lw,
                       color=m.color)
            ax[1].set_ylim(vmin, vmax)
            ax[1].spines['top'].set_visible(False)
            ax[1].spines['right'].set_visible(False)
            ax[1].spines['bottom'].set_position('zero')
            ax[1].set_xticks([])
            ax[1].set_yticks(yticks)
            ax[1].set_xticklabels([])
            ax[1].set_ylabel('cycle')

            # Plot the variability in co2, shade every other decade
            shade = [
                t0,
            ] + xticks + [
                tf,
            ]
            alf = 0.15
            bot = vmin + 0.02 * (vmax - vmin)
            for i in range(1, len(shade) - 1):
                if i % 2 == 0:
                    ax[2].text(shade[i],
                               bot,
                               shade[i],
                               color='k',
                               alpha=alf,
                               size=12)
                    ax[3].text(shade[i],
                               bot,
                               shade[i],
                               color='k',
                               alpha=alf,
                               size=12)
                else:
                    ax[2].fill_between(shade[i:(i + 2)], [vmin, vmin],
                                       [vmax, vmax],
                                       color='k',
                                       alpha=0.05,
                                       lw=0)
                    ax[2].text(shade[i],
                               bot,
                               shade[i],
                               color='k',
                               alpha=alf,
                               size=12)
                    ax[3].fill_between(shade[i:(i + 2)], [vmin, vmin],
                                       [vmax, vmax],
                                       color='k',
                                       alpha=0.05,
                                       lw=0)
                    ax[3].text(shade[i],
                               bot,
                               shade[i],
                               color='k',
                               alpha=alf,
                               size=12)

            ax[2].plot(obs.time / 365 + 1850,
                       obs.data[:, site_id],
                       lw=1.5 * lw,
                       color='k',
                       alpha=0.35)
            ax[2].plot(mod.time / 365 + 1850,
                       mod.data[:, site_id],
                       lw=lw,
                       color=m.color)
            ax[2].set_ylim(vmin, vmax)
            ax[2].spines['top'].set_visible(False)
            ax[2].spines['right'].set_visible(False)
            ax[2].spines['bottom'].set_position('zero')
            ax[2].set_yticks(yticks)
            ax[2].set_xticklabels([])
            ax[2].set_xticks([])
            ax[2].set_ylabel('var')

            # Plot the interannual variability in co2, shade every other decade
            ax[3].plot(oiav.time / 365 + 1850,
                       oiav.data[:, site_id],
                       lw=1.5 * lw,
                       color='k',
                       alpha=0.35)
            ax[3].plot(miav.time / 365 + 1850,
                       miav.data[:, site_id],
                       lw=lw,
                       color=m.color)
            ax[3].set_ylim(vmin, vmax)
            ax[3].spines['top'].set_visible(False)
            ax[3].spines['right'].set_visible(False)
            ax[3].spines['bottom'].set_position('zero')
            ax[3].set_xticks([])
            ax[3].set_yticks(yticks)
            ax[3].tick_params(axis='x', direction='inout', length=10)
            ax[3].set_ylabel('iav')

            # Save the figure
            fig.savefig(
                os.path.join(self.output_path,
                             "%s_global_%s.png" % (m.name, site)))
            page.addFigure(section,
                           site,
                           "MNAME_global_%s.png" % site,
                           side="",
                           legend=False,
                           width=fig.get_size_inches()[0] * fig.dpi * 0.25,
                           br=True,
                           longname="Site %s" % site)
            plt.close()

        # Compute mean amplitude, max and min phase over latitude bands
        lat_bnds = self.lat_bands
        lat = 0.5 * (lat_bnds[:-1] + lat_bnds[1:])
        nb = lat_bnds.size - 1
        o_band_min = np.zeros(nb)
        o_band_max = np.zeros(nb)
        o_band_amp = np.zeros(nb)
        o_band_iav = np.zeros(nb)
        m_band_min = np.zeros(nb)
        m_band_max = np.zeros(nb)
        m_band_amp = np.zeros(nb)
        m_band_iav = np.zeros(nb)
        with np.errstate(under='ignore'):
            for i in range(o_band_min.size):
                ind = np.where(
                    (obs.lat > lat_bnds[i]) * (obs.lat <= lat_bnds[i + 1]))[0]
                o_band_min[i] = _meanDay(ominp.data[ind])
                o_band_max[i] = _meanDay(omaxp.data[ind])
                o_band_amp[i] = oamp.data[ind].mean()
                o_band_iav[i] = oiav.data.std(axis=0)[ind].mean()
                m_band_min[i] = _meanDay(mminp.data[ind])
                m_band_max[i] = _meanDay(mmaxp.data[ind])
                m_band_amp[i] = mamp.data[ind].mean()
                m_band_iav[i] = miav.data.std(axis=0)[ind].mean()

        # To plot the mean values over latitude bands superimposed on
        # the globe, we have to transform the phase and amplitude
        # values to [-180,180], as if they were longitudes.
        o_band_min = o_band_min / 365. * 360 - 180
        o_band_max = o_band_max / 365. * 360 - 180
        m_band_min = m_band_min / 365. * 360 - 180
        m_band_max = m_band_max / 365. * 360 - 180

        max_amp = o_band_amp.max()
        min_amp = o_band_amp.min()
        amp_ticks = np.linspace(min_amp, max_amp, 6)
        amp_ticklabels = ["%.2f" % t for t in amp_ticks]
        damp = 0.1 * (max_amp - min_amp)
        max_amp += damp
        min_amp -= damp
        o_band_amp = (o_band_amp - min_amp) / (max_amp - min_amp) * 360 - 180
        m_band_amp = (m_band_amp - min_amp) / (max_amp - min_amp) * 360 - 180
        amp_ticks = (amp_ticks - min_amp) / (max_amp - min_amp) * 360 - 180

        max_iav = max(o_band_iav.max(), m_band_iav.max())
        min_iav = 0.
        iav_ticks = np.linspace(min_iav, max_iav, 6)
        iav_ticklabels = ["%.2f" % t for t in iav_ticks]
        diav = 0.1 * (max_iav - min_iav)
        max_iav += diav
        min_iav -= diav
        o_band_iav = (o_band_iav - min_iav) / (max_iav - min_iav) * 360. - 180.
        m_band_iav = (m_band_iav - min_iav) / (max_iav - min_iav) * 360. - 180.
        iav_ticks = (iav_ticks - min_iav) / (max_iav - min_iav) * 360. - 180.

        # Plot mean latitude band amplitude where amplitude is on the longitude axis
        fig, ax = plt.subplots(figsize=(8, 4.5), tight_layout=True)
        bmap = Basemap(projection='cyl',
                       llcrnrlon=-180,
                       llcrnrlat=-90,
                       urcrnrlon=+180,
                       urcrnrlat=+90,
                       ax=ax,
                       resolution='c')
        bmap.drawlsmask(land_color="0.875", ocean_color="1.000", lakes=True)
        ms = 8
        bmap.scatter(obs.lon,
                     obs.lat,
                     8,
                     color="0.60",
                     latlon=True,
                     label="Sites",
                     ax=ax)
        ax.plot(o_band_amp,
                lat,
                '--o',
                color=np.asarray([0.5, 0.5, 0.5]),
                label="%s amplitude" % self.name,
                mew=0,
                markersize=ms)
        ax.plot(m_band_amp,
                lat,
                '-o',
                color=m.color,
                label="%s amplitude" % m.name,
                mew=0,
                markersize=ms)
        ax.yaxis.grid(color="0.875", linestyle="-")
        ax.legend(bbox_to_anchor=(0, 1.005, 1, 0.25),
                  loc='lower left',
                  mode='expand',
                  ncol=5,
                  borderaxespad=0,
                  frameon=False)
        ax.set_xlim(-180, 180)
        ax.set_ylim(-90, 90)
        ax.set_xlabel(obs.unit)
        ax.set_xticks(amp_ticks)
        ax.set_xticklabels(amp_ticklabels)
        ax.set_yticks(lat_bnds)
        fig.savefig(os.path.join(self.output_path, "%s_amp.png" % m.name))
        page.addFigure("Summary",
                       "amp",
                       "MNAME_amp.png",
                       side="AMPLITUDE",
                       width=fig.get_size_inches()[0] * fig.dpi * 0.75,
                       legend=False)

        # Plot mean latitude band iav where iav is on the longitude axis
        fig, ax = plt.subplots(figsize=(8, 4.5), tight_layout=True)
        bmap = Basemap(projection='cyl',
                       llcrnrlon=-180,
                       llcrnrlat=-90,
                       urcrnrlon=+180,
                       urcrnrlat=+90,
                       ax=ax,
                       resolution='c')
        bmap.drawlsmask(land_color="0.875", ocean_color="1.000", lakes=True)
        ms = 8
        bmap.scatter(obs.lon,
                     obs.lat,
                     8,
                     color="0.60",
                     latlon=True,
                     label="Sites",
                     ax=ax)
        ax.plot(o_band_iav,
                lat,
                '--o',
                color=np.asarray([0.5, 0.5, 0.5]),
                label="%s variability" % self.name,
                mew=0,
                markersize=ms)
        ax.plot(m_band_iav,
                lat,
                '-o',
                color=m.color,
                label="%s variability" % m.name,
                mew=0,
                markersize=ms)
        ax.yaxis.grid(color="0.875", linestyle="-")
        ax.legend(bbox_to_anchor=(0, 1.005, 1, 0.25),
                  loc='lower left',
                  mode='expand',
                  ncol=5,
                  borderaxespad=0,
                  frameon=False)
        ax.set_xlim(-180, 180)
        ax.set_ylim(-90, 90)
        ax.set_xlabel(obs.unit)
        ax.set_xticks(iav_ticks)
        ax.set_xticklabels(iav_ticklabels)
        ax.set_yticks(lat_bnds)
        fig.savefig(os.path.join(self.output_path, "%s_iav.png" % m.name))
        page.addFigure("Summary",
                       "iav",
                       "MNAME_iav.png",
                       side="INTERANNUAL VARIABILITY",
                       width=fig.get_size_inches()[0] * fig.dpi * 0.75,
                       legend=False)

        # Plot mean latitude band max phase where the phase is on the longitude axis
        fig, ax = plt.subplots(figsize=(8, 4.5), tight_layout=True)
        bmap = Basemap(projection='cyl',
                       llcrnrlon=-180,
                       llcrnrlat=-90,
                       urcrnrlon=+180,
                       urcrnrlat=+90,
                       ax=ax,
                       resolution='c')
        bmap.drawlsmask(land_color="0.875", ocean_color="1.000", lakes=True)
        bmap.scatter(obs.lon,
                     obs.lat,
                     8,
                     color="0.60",
                     latlon=True,
                     label="Sites",
                     ax=ax)
        ax.plot(o_band_max,
                lat,
                '--o',
                color=np.asarray([0.5, 0.5, 0.5]),
                label="%s maximum" % self.name,
                mew=0,
                markersize=ms)
        ax.plot(m_band_max,
                lat,
                '-o',
                color=m.color,
                label="%s maximum" % m.name,
                mew=0,
                markersize=ms)
        ax.yaxis.grid(color="0.875", linestyle="-")
        ax.legend(bbox_to_anchor=(0, 1.005, 1, 0.25),
                  loc='lower left',
                  mode='expand',
                  ncol=3,
                  borderaxespad=0,
                  frameon=False)
        ax.set_xlim(-180, 180)
        ax.set_ylim(-90, 90)
        ax.set_xticks(mid_months / 365. * 360. - 180)
        ax.set_xticklabels(lbl_months)
        ax.set_yticks(lat_bnds)
        fig.savefig(os.path.join(self.output_path, "%s_maxphase.png" % m.name))
        page.addFigure("Summary",
                       "maxphase",
                       "MNAME_maxphase.png",
                       side="TIMING OF MAXIMUM",
                       width=fig.get_size_inches()[0] * fig.dpi * 0.75,
                       legend=False)

        # Plot mean latitude band min phase where the phase is on the longitude axis
        fig, ax = plt.subplots(figsize=(8, 4.5), tight_layout=True)
        bmap = Basemap(projection='cyl',
                       llcrnrlon=-180,
                       llcrnrlat=-90,
                       urcrnrlon=+180,
                       urcrnrlat=+90,
                       ax=ax,
                       resolution='c')
        bmap.drawlsmask(land_color="0.875", ocean_color="1.000", lakes=True)
        bmap.scatter(obs.lon,
                     obs.lat,
                     8,
                     color="0.60",
                     latlon=True,
                     label="Sites",
                     ax=ax)
        ax.plot(o_band_min,
                lat,
                '--o',
                color=np.asarray([0.5, 0.5, 0.5]),
                label="%s minimum" % self.name,
                mew=0,
                markersize=ms)
        ax.plot(m_band_min,
                lat,
                '-o',
                color=m.color,
                label="%s minimum" % m.name,
                mew=0,
                markersize=ms)
        ax.yaxis.grid(color="0.875", linestyle="-")
        ax.legend(bbox_to_anchor=(0, 1.005, 1, 0.25),
                  loc='lower left',
                  mode='expand',
                  ncol=3,
                  borderaxespad=0,
                  frameon=False)
        ax.set_xlim(-180, 180)
        ax.set_ylim(-90, 90)
        ax.set_xticks(mid_months / 365. * 360. - 180)
        ax.set_xticklabels(lbl_months)
        ax.set_yticks(lat_bnds)
        fig.savefig(os.path.join(self.output_path, "%s_minphase.png" % m.name))
        page.addFigure("Summary",
                       "minphase",
                       "MNAME_minphase.png",
                       side="TIMING OF MINIMUM",
                       width=fig.get_size_inches()[0] * fig.dpi * 0.75,
                       legend=False)
Esempio n. 20
0
def getDiurnalDataForGivenYear(var, year):
    """
    """

    # Get this year's data, make sure there is enough
    spd = int(round(1 / np.diff(var.time_bnds, axis=1).mean()))
    datum = cftime.date2num(cftime.datetime(year, 1, 1), "days since 1850-1-1")
    ind = np.where(year == var.year)[0]
    t = var.time[ind] - datum
    tb = var.time_bnds[ind] - datum
    data = var.data[ind, 0]

    # Reshape the data
    begin = np.argmin(tb[:(spd - 1), 0] % 1)
    end = begin + int(t[begin:].size / float(spd) - 1) * spd
    shift = int(round((var.tmax - 12) / (var.dt * 24)))
    begin += shift
    end += shift
    shp = (-1, spd) + data.shape[1:]
    data = data[begin:end].reshape(shp)
    t = t[begin:end].reshape(shp).mean(axis=1)

    # Diurnal magnitude
    mag = Variable(name="mag%d" % year,
                   unit=var.unit,
                   time=t,
                   data=data.max(axis=1) - data.min(axis=1))

    # Some of the tower data is 'intelligently' masked which leads to
    # too much of the data being removed to use my change-detection
    # algorithm to determine season begin/end.
    mag.skip = False
    if mag.data.mask.all(): raise NotEnoughDataInYear  # if year is all masked
    dmag = (mag.data.max() - mag.data.min())
    if dmag < 1e-14:
        raise NotEnoughDataInYear  # if diurnal mag has no amplitude

    # Some mask out off seasons, season is taken to be all the data
    begin_day, end_day = mag.time[mag.data.mask == False][[
        0, -1
    ]]  # begin/end of the mask data
    if ((begin_day < 2 and end_day < 363)
            or (begin_day > 2 and end_day > 363)):
        # this is likely a dataset which is a partial year
        raise NotEnoughDataInYear
    elif (begin_day > 2 and end_day < 363):
        # this is likely a dataset that masks out off-seasons
        season = np.asarray([begin_day, end_day])
    else:
        season = findSeasonalTiming(mag.time, mag.data)
    centroid = findSeasonalCentroid(mag.time, mag.data)
    mag.season = season
    mag.centroid = centroid

    # Mask out off season
    mask = (t < season[0]) + (t > season[1])
    data = np.ma.masked_array(data,
                              mask=mask[:, np.newaxis] *
                              np.ones(data.shape[1], dtype=bool))

    # Mean seasonal diurnal cycle
    uncert = np.zeros((data.shape[1], 2))
    for i in range(data.shape[1]):
        d = data[:, i].compressed()
        if d.size == 0: continue
        uncert[i, :] = np.percentile(d, [10, 90])
    day = np.linspace(0, 1, spd + 1)
    day = 0.5 * (day[:-1] + day[1:])
    with np.errstate(under='ignore', over='ignore'):
        cycle = Variable(name="cycle%d" % year,
                         unit=var.unit,
                         time=day,
                         data=data.mean(axis=0),
                         data_bnds=uncert)

    # Mean seasonal uptake
    uptake = Variable(unit=var.unit,
                      time=var.time[ind] - datum,
                      time_bnds=var.time_bnds[ind] - datum,
                      data=var.data[ind, 0])
    uptake.data = np.ma.masked_array(uptake.data,
                                     mask=((uptake.time < season[0]) +
                                           (uptake.time > season[1])))
    uptake = uptake.integrateInTime(mean=True)
    cycle.uptake = uptake.data

    # Timing of peak seasonal cycle, could be a maximum or minimum,
    # check second derivative of a best-fit parabola to the daytime
    # data.
    begin = int(spd / 4)
    end = int(spd * 3 / 4)
    p = np.polyfit(cycle.time[begin:end], cycle.data[begin:end], 2)
    if p[0] < 0:
        cycle.peak = day[cycle.data.argmax()] * 24
    else:
        cycle.peak = day[cycle.data.argmin()] * 24

    return mag, cycle
Esempio n. 21
0
    def stageData(self, m):

        # Get the observational data
        obs = Variable(filename=self.source,
                       variable_name=self.variable,
                       alternate_vars=self.alternate_vars)

        # Reduce the sites
        if self.map:
            obs.lat = obs.lat[self.map]
            obs.lon = obs.lon[self.map]
            obs.depth = obs.depth[self.map]
            obs.data = obs.data[:, self.map]
            obs.ndata = len(self.map)

        # Get the model result
        force_emulation = self.keywords.get("force_emulation",
                                            "False").lower() == "true"
        never_emulation = self.keywords.get("never_emulation",
                                            "False").lower() == "true"
        no_co2 = False
        mod = None
        if not force_emulation:
            try:
                #print "Trying to get co2 from %s" % m.name
                mod = m.extractTimeSeries(
                    self.variable,
                    alt_vars=self.alternate_vars,
                    initial_time=obs.time_bnds[0, 0],
                    final_time=obs.time_bnds[-1, 1],
                    lats=None if obs.spatial else obs.lat,
                    lons=None if obs.spatial else obs.lon)
            except il.VarNotInModel:
                #print "co2 not in %s" % m.name
                no_co2 = True

        if (((mod is None) or no_co2) and (not never_emulation)):
            #print "Emulating co2 in %s" % m.name
            mod = self.emulatedModelResult(m, obs)

        if mod is None: raise il.VarNotInModel()

        # get the right layering, closest to the layer elevation where all aren't masked.
        if mod.layered:
            ind = (np.abs(obs.depth[:, np.newaxis] - mod.depth)).argmin(axis=1)
            for i in range(ind.size):
                while (mod.data[:, ind[i], i].mask.sum() >
                       0.5 * mod.data.shape[0]):
                    ind[i] += 1
            data = []
            for i in range(ind.size):
                data.append(mod.data[:, ind[i], i])
            mod.data = np.ma.masked_array(data).T
            mod.depth = None
            mod.depth_bnds = None
            mod.layered = False
            obs, mod = il.MakeComparable(obs,
                                         mod,
                                         mask_ref=True,
                                         clip_ref=True)
            mod.data.mask += obs.data.mask

        # Remove the trend via quadradic polynomial
        obs = _detrend(obs)
        mod = _detrend(mod)

        return obs, mod
Esempio n. 22
0
    def confront(self, m):

        # Grab the data
        obs, mod = self.stageData(m)

        # Compute amplitude, min and max phase, and annual cycle as numpy data arrays
        ocyc, ot, otb = _cycleShape(obs)
        mcyc, mt, mtb = _cycleShape(mod)
        n = len(self.lbls)
        obs_amp = np.zeros(n)
        obs_maxp = np.zeros(n)
        obs_minp = np.zeros(n)
        mod_amp = np.zeros(n)
        mod_maxp = np.zeros(n)
        mod_minp = np.zeros(n)
        obs_cyc = np.zeros((366, n))
        mod_cyc = np.zeros((366, n))
        well_define = np.zeros(n)
        for i, site in enumerate(self.lbls):
            obs_amp[i], obs_maxp[i], obs_minp[
                i], obs_cyc[:, i] = _siteCharacteristics(ot, ocyc[..., i])
            mod_amp[i], mod_maxp[i], mod_minp[
                i], mod_cyc[:, i] = _siteCharacteristics(mt, mcyc[..., i])
            well_define[i] = _phaseWellDefined(obs.time, obs.data[:, i])
        well_define /= well_define.sum()

        # Write out ILAMB variables for observed quantities
        with np.errstate(under='ignore'):
            ocyc = Variable(
                name="cycle",  # mean annual cycle
                unit=obs.unit,
                data=ocyc.mean(axis=0),
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon,
                time=ot,
                time_bnds=otb)
            oiav = Variable(
                name="iav",  # deseasonalized interannual variability
                unit=obs.unit,
                data=obs.data -
                ocyc.data[ocyc.time.searchsorted(obs.time % 365), ...],
                time=obs.time,
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon,
                time_bnds=obs.time_bnds)
            ocycf = Variable(
                name=
                "cycle_fine",  # finely sampled cycle from cubic interpolation
                unit=obs.unit,
                data=obs_cyc,
                time=np.linspace(0, 365, 366),
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon)
            obs_amp = Variable(
                name="amp",  # mean amplitude over time period
                unit=obs.unit,
                data=obs_amp,
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon)
            obs_maxp = Variable(
                name="maxp",  # Julian day of the maximum of the annual cycle
                unit="d",
                data=obs_maxp,
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon)
            obs_minp = Variable(
                name="minp",  # Julian day of the minimum of the annual cycle
                unit="d",
                data=obs_minp,
                ndata=obs.ndata,
                lat=obs.lat,
                lon=obs.lon)

            # Write out ILAMB variables for modeled quantities
            mcyc = Variable(
                name="cycle",  # mean annual cycle
                unit=mod.unit,
                data=mcyc.mean(axis=0),
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon,
                time=mt,
                time_bnds=mtb)
            miav = Variable(
                name="iav",  # deseasonalized interannual variability
                unit=mod.unit,
                data=mod.data -
                mcyc.data[mcyc.time.searchsorted(mod.time % 365), ...],
                time=mod.time,
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon,
                time_bnds=mod.time_bnds)
            mcycf = Variable(
                name=
                "cycle_fine",  # finely sampled cycle from cubic interpolation
                unit=mod.unit,
                data=mod_cyc,
                time=np.linspace(0, 365, 366),
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon)
            mod_amp = Variable(
                name="amp",  # mean amplitude over time period
                unit=mod.unit,
                data=mod_amp,
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon)
            mod_maxp = Variable(
                name="maxp",  # Julian day of the maximum of the annual cycle
                unit="d",
                data=mod_maxp,
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon)
            mod_minp = Variable(
                name="minp",  # Julian day of the minimum of the annual cycle
                unit="d",
                data=mod_minp,
                ndata=mod.ndata,
                lat=mod.lat,
                lon=mod.lon)

            # Amplitude score: for each site we compute the relative error
            # in amplitude and then score each site using the
            # exponential. The score for the model is then the arithmetic
            # mean across sites.
            Samp = Variable(name="Amplitude Score global",
                            unit="1",
                            data=np.exp(-np.abs(mod_amp.data - obs_amp.data) /
                                        obs_amp.data).mean())

            # Interannual variability score: similar to the amplitude
            # score, we also score the relative error in the stdev(iav)
            # and report a mean across sites.
            ostd = oiav.data.std(axis=0)
            mstd = miav.data.std(axis=0)
            Siav = Variable(name="Interannual Variability Score global",
                            unit="1",
                            data=np.exp(-np.abs(mstd - ostd) / ostd).mean())

            # Min/Max Phase score: for each site we compute the phase
            # shift and normalize it linearly where a 0 day shift gets a
            # score of 1 and a 365/2 day shift is zero. We then compute a
            # weighted mean across sites where sites without a well
            # defined annual cycle are discarded.
            Smax = Variable(name="Max Phase Score global",
                            unit="1",
                            data=np.average(_computeShift(obs_maxp, mod_maxp),
                                            weights=well_define))
            Smin = Variable(name="Min Phase Score global",
                            unit="1",
                            data=np.average(_computeShift(obs_minp, mod_minp),
                                            weights=well_define))

        # Write out the intermediate variables
        with Dataset(os.path.join(self.output_path,
                                  "%s_%s.nc" % (self.name, m.name)),
                     mode="w") as results:
            results.setncatts({"name": m.name, "color": m.color})
            for v in [
                    mod, mcyc, miav, mcycf, mod_maxp, mod_minp, mod_amp, Samp,
                    Siav, Smax, Smin
            ]:
                v.toNetCDF4(results, group="MeanState")
        if not self.master: return
        with Dataset(os.path.join(self.output_path,
                                  "%s_Benchmark.nc" % self.name),
                     mode="w") as results:
            results.setncatts({
                "name": "Benchmark",
                "color": np.asarray([0.5, 0.5, 0.5])
            })
            for v in [obs, ocyc, oiav, ocycf, obs_maxp, obs_minp, obs_amp]:
                v.toNetCDF4(results, group="MeanState")
Esempio n. 23
0
    def emulatedModelResult(self, m, obs):

        # Emulation parameters
        emulated_flux = self.keywords.get("emulated_flux", "nbp")
        spinup = 12
        Ninf = 60
        ilev = 1

        # Get the model result
        mod = m.extractTimeSeries(emulated_flux,
                                  initial_time=obs.time_bnds[0, 0] -
                                  float(Ninf) / 12 * 365 + 29.,
                                  final_time=obs.time_bnds[-1, 1])

        # What if I don't have Ninf leadtime?
        tf = min(obs.time_bnds[-1, 1], mod.time_bnds[-1, 1])
        obs.trim(t=[-1e20, tf])
        mod.trim(t=[-1e20, tf])

        # Integrate the emulated flux over each pulse region
        region_int = {}
        for region in self.pulse_regions:
            region_int[region] = mod.integrateInSpace(
                region=region).convert("Pg yr-1")

        # Load the operator from the files
        lat, lon, H = None, None, None
        for i in range(12):
            # FIX: move pulses into one file to avoid requiring a naming convention
            with Dataset(os.path.join(self.pulse_dir,
                                      "Pulse%02d.nc" % (i + 1))) as dset:
                if lat is None: lat = dset.variables["lat"][...]
                if lon is None: lon = dset.variables["lon"][...]
                if H is None:
                    H = np.zeros((22, 12, Ninf + 12, lat.size, lon.size))
                for j in range(22):
                    T = dset.variables['T%d' % (j + 1)]
                    H[j, i,
                      ...] = T[spinup:, ilev, ...] - T[:spinup, ...].mean()

        # Where are our sites?
        ilat = np.abs(lat[:, np.newaxis] - obs.lat).argmin(axis=0)
        ilon = np.abs(lon[:, np.newaxis] - obs.lon).argmin(axis=0)

        # Apply the operator
        Nyrs = mod.time.size / 12
        Ntot = 12 * Nyrs + Ninf
        eflux = np.zeros((obs.ndata, 22, Ntot))
        for j in range(20):
            for s in range(obs.ndata):
                Htemp = H[j, ..., ilat[s], ilon[s]]
                Htrac = np.zeros((22, Ntot, 12 * Nyrs))
                for i in range(Nyrs):
                    pb = 12 * i
                    pe = 12 * (i + 1)
                    re = pe + Ninf
                    Htrac[j, pb:re, pb:pe] = Htemp.T
                    Htrac[j, re:, pb:pe] = np.tile(Htemp[:, -1],
                                                   [12 * (Nyrs - i - 1), 1])
                eflux[s, j, :] = np.dot(
                    Htrac[j, ...], region_int["pulse_region_%d" %
                                              (j + 1)].data) * (-1e-3
                                                                )  # H is [] ?

        eflux = eflux.sum(axis=1).T
        eflux = eflux[Ninf:-Ninf]
        eflux = np.ma.masked_array(eflux, mask=obs.data.mask)
        mod = Variable(name="co2",
                       unit=obs.unit,
                       lat=obs.lat,
                       lon=obs.lon,
                       ndata=obs.ndata,
                       time=obs.time,
                       time_bnds=obs.time_bnds,
                       data=eflux)
        return mod
Esempio n. 24
0
    def confront(self, m):

        # Grab the data
        obs, mod = self.stageData(m)

        # What years does the analysis run over?
        obs.year = np.asarray(
            [t.year for t in cftime.num2date(obs.time, "days since 1850-1-1")],
            dtype=int)
        mod.year = np.asarray(
            [t.year for t in cftime.num2date(mod.time, "days since 1850-1-1")],
            dtype=int)

        # Analysis
        mod_file = os.path.join(self.output_path,
                                "%s_%s.nc" % (self.name, m.name))
        obs_file = os.path.join(self.output_path,
                                "%s_Benchmark.nc" % (self.name, ))
        with il.FileContextManager(self.master, mod_file, obs_file) as fcm:

            # Encode some names and colors
            fcm.mod_dset.setncatts({
                "name": m.name,
                "color": m.color,
                "lat": mod.lat[0],
                "lon": mod.lon[0],
                "complete": 0
            })
            if self.master:
                fcm.obs_dset.setncatts({
                    "name": "Benchmark",
                    "color": np.asarray([0.5, 0.5, 0.5]),
                    "complete": 0
                })

            Osbegin = []
            Osend = []
            Oslen = []
            Opeak = []
            Ouptake = []
            Msbegin = []
            Msend = []
            Mslen = []
            Mpeak = []
            Muptake = []
            Ssbegin = []
            Ssend = []
            Scentroid = []
            Speak = []
            Suptake = []
            obs_years = 0
            mod_years = 0
            for y in self.years:

                # First try to get the obs for this year, might not
                # have enough info in which case we skip the year.
                try:
                    obs_mag, obs_cycle = getDiurnalDataForGivenYear(obs, y)
                except NotEnoughDataInYear:
                    continue

                # Output what we must even if the model doesn't have
                # data here.
                obs_years += 1
                Osbegin.append(obs_mag.season[0])
                Osend.append(obs_mag.season[1])
                Oslen.append(obs_mag.season[1] - obs_mag.season[0])
                Opeak.append(obs_cycle.peak)
                Ouptake.append(obs_cycle.uptake)
                if self.master:
                    obs_mag.toNetCDF4(fcm.obs_dset,
                                      group="MeanState",
                                      attributes={
                                          "sbegin": obs_mag.season[0],
                                          "send": obs_mag.season[1]
                                      })
                    obs_cycle.toNetCDF4(fcm.obs_dset,
                                        group="MeanState",
                                        attributes={
                                            "uptake": obs_cycle.uptake,
                                            "peak": obs_cycle.peak
                                        })

                # Try to get enough data from the model to operate
                try:
                    mod_mag, mod_cycle = getDiurnalDataForGivenYear(mod, y)
                except NotEnoughDataInYear:
                    continue

                mod_years += 1
                Msbegin.append(mod_mag.season[0])
                Msend.append(mod_mag.season[1])
                Mslen.append(mod_mag.season[1] - mod_mag.season[0])
                Mpeak.append(mod_cycle.peak)
                Muptake.append(mod_cycle.uptake)
                mod_mag.toNetCDF4(fcm.mod_dset,
                                  group="MeanState",
                                  attributes={
                                      "sbegin": mod_mag.season[0],
                                      "send": mod_mag.season[1]
                                  })
                mod_cycle.toNetCDF4(fcm.mod_dset,
                                    group="MeanState",
                                    attributes={
                                        "uptake": mod_cycle.uptake,
                                        "peak": mod_cycle.peak
                                    })

                # Get scores for this year
                ssbegin, ssend, scentroid, speak, suptake = DiurnalScalars(
                    obs_mag, mod_mag, obs_cycle, mod_cycle)
                Ssbegin.append(ssbegin)
                Ssend.append(ssend)
                Scentroid.append(scentroid)
                Speak.append(speak)
                Suptake.append(suptake)

            # Output mean scores/scalars
            if self.master and obs_years > 0:
                Ouptake = np.ma.masked_invalid(Ouptake)
                Variable(name="Number of Years global",
                         unit="1",
                         data=obs_years).toNetCDF4(fcm.obs_dset,
                                                   group="MeanState")
                Variable(name="Computed UTC Shift global",
                         unit="h",
                         data=obs.tmax - 12).toNetCDF4(fcm.obs_dset,
                                                       group="MeanState")
                Variable(name="Season Beginning global",
                         unit="d",
                         data=np.asarray(Osbegin).mean()).toNetCDF4(
                             fcm.obs_dset, group="MeanState")
                Variable(name="Season Ending global",
                         unit="d",
                         data=np.asarray(Osend).mean()).toNetCDF4(
                             fcm.obs_dset, group="MeanState")
                Variable(name="Season Length global",
                         unit="d",
                         data=np.asarray(Oslen).mean()).toNetCDF4(
                             fcm.obs_dset, group="MeanState")
                Variable(name="Diurnal Peak Timing global",
                         unit="h",
                         data=np.asarray(Opeak).mean()).toNetCDF4(
                             fcm.obs_dset, group="MeanState")
                Variable(name="Mean Season Uptake global",
                         unit=obs.unit,
                         data=Ouptake.mean()).toNetCDF4(fcm.obs_dset,
                                                        group="MeanState")
            if mod_years > 0:
                Muptake = np.ma.masked_invalid(Muptake)
                Suptake = np.ma.masked_invalid(Suptake)
                Variable(name="Number of Years global",
                         unit="1",
                         data=mod_years).toNetCDF4(fcm.mod_dset,
                                                   group="MeanState")
                Variable(name="Computed UTC Shift global",
                         unit="h",
                         data=mod.tmax - 12).toNetCDF4(fcm.mod_dset,
                                                       group="MeanState")
                Variable(name="Season Beginning global",
                         unit="d",
                         data=np.asarray(Msbegin).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Season Ending global",
                         unit="d",
                         data=np.asarray(Msend).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Season Length global",
                         unit="d",
                         data=np.asarray(Mslen).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Diurnal Peak Timing global",
                         unit="h",
                         data=np.asarray(Mpeak).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Mean Season Uptake global",
                         unit=mod.unit,
                         data=Muptake.mean()).toNetCDF4(fcm.mod_dset,
                                                        group="MeanState")
                Variable(name="Season Beginning Score global",
                         unit="1",
                         data=np.asarray(Ssbegin).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Season Ending Score global",
                         unit="1",
                         data=np.asarray(Ssend).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Season Strength Score global",
                         unit="1",
                         data=np.asarray(Scentroid).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Diurnal Peak Timing Score global",
                         unit="1",
                         data=np.asarray(Speak).mean()).toNetCDF4(
                             fcm.mod_dset, group="MeanState")
                Variable(name="Diurnal Uptake Score global",
                         unit="1",
                         data=Suptake.mean()).toNetCDF4(fcm.mod_dset,
                                                        group="MeanState")

            # Flag complete
            fcm.mod_dset.complete = 1
            if self.master: fcm.obs_dset.complete = 1
Esempio n. 25
0
def test_bias(variables):
    head = "\n--- Testing bias() "
    print "%s%s\n" % (head, "-" * (120 - len(head)))
    for vdict in variables:
        var = vdict["var"]
        try:
            vdict["bias"] = var.bias(var)
            print vdict["bias"]
        except il.NotSpatialVariable:
            pass


# Setup different types of variables
gpp = {}
gpp["var"] = Variable(filename=os.environ["ILAMB_ROOT"] +
                      "/DATA/gpp/FLUXNET-MTE/derived/gpp.nc",
                      variable_name="gpp")
le = {}
le["var"] = Variable(filename=os.environ["ILAMB_ROOT"] +
                     "/DATA/le/FLUXNET/derived/le.nc",
                     variable_name="le")
co2 = {}
co2["var"] = Variable(filename=os.environ["ILAMB_ROOT"] +
                      "/DATA/co2/MAUNA.LOA/derived/co2_1959-2013.nc",
                      variable_name="co2")
pi = {}
pi["var"] = Variable(data=np.pi, unit="-", name="pi")

variables = [gpp, le, co2, pi]

head = "\n--- Found the following variables for testing "
Esempio n. 26
0
    def stageData(self, m):

        energy_threshold = float(self.keywords.get("energy_threshold", 20.))

        # Handle obs data
        sh_obs = Variable(filename=os.path.join(os.environ["ILAMB_ROOT"],
                                                "DATA/sh/GBAF/sh_0.5x0.5.nc"),
                          variable_name="sh")
        le_obs = Variable(filename=os.path.join(os.environ["ILAMB_ROOT"],
                                                "DATA/le/GBAF/le_0.5x0.5.nc"),
                          variable_name="le")
        sh_obs, le_obs, obs = _evapfrac(sh_obs, le_obs, self.variable,
                                        energy_threshold)

        # Prune out uncovered regions
        if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        # Handle model data
        sh_mod = m.extractTimeSeries("hfss",
                                     initial_time=obs.time_bnds[0, 0],
                                     final_time=obs.time_bnds[-1, 1],
                                     lats=None if obs.spatial else obs.lat,
                                     lons=None if obs.spatial else obs.lon)
        le_mod = m.extractTimeSeries("hfls",
                                     initial_time=obs.time_bnds[0, 0],
                                     final_time=obs.time_bnds[-1, 1],
                                     lats=None if obs.spatial else obs.lat,
                                     lons=None if obs.spatial else obs.lon)
        sh_mod, le_mod, mod = _evapfrac(sh_mod, le_mod, self.variable,
                                        energy_threshold)

        # Make variables comparable
        obs, mod = il.MakeComparable(obs,
                                     mod,
                                     mask_ref=True,
                                     clip_ref=True,
                                     logstring="[%s][%s]" %
                                     (self.longname, m.name))
        sh_obs, sh_mod = il.MakeComparable(sh_obs,
                                           sh_mod,
                                           mask_ref=True,
                                           clip_ref=True,
                                           logstring="[%s][%s]" %
                                           (self.longname, m.name))
        le_obs, le_mod = il.MakeComparable(le_obs,
                                           le_mod,
                                           mask_ref=True,
                                           clip_ref=True,
                                           logstring="[%s][%s]" %
                                           (self.longname, m.name))

        # Compute the mean ef
        sh_obs = sh_obs.integrateInTime(mean=True)
        le_obs = le_obs.integrateInTime(mean=True)
        np.seterr(over='ignore', under='ignore')
        obs_timeint = np.ma.masked_array(
            le_obs.data / (le_obs.data + sh_obs.data),
            mask=(sh_obs.data.mask + le_obs.data.mask))
        np.seterr(over='warn', under='warn')
        obs_timeint = Variable(name=self.variable,
                               unit="1",
                               data=obs_timeint,
                               lat=sh_obs.lat,
                               lat_bnds=sh_obs.lat_bnds,
                               lon=sh_obs.lon,
                               lon_bnds=sh_obs.lon_bnds)
        sh_mod = sh_mod.integrateInTime(mean=True)
        le_mod = le_mod.integrateInTime(mean=True)
        np.seterr(over='ignore', under='ignore')
        mod_timeint = np.ma.masked_array(
            le_mod.data / (le_mod.data + sh_mod.data),
            mask=(sh_mod.data.mask + le_mod.data.mask))
        np.seterr(over='warn', under='warn')
        mod_timeint = Variable(name=self.variable,
                               unit="1",
                               data=mod_timeint,
                               lat=sh_mod.lat,
                               lat_bnds=sh_mod.lat_bnds,
                               lon=sh_mod.lon,
                               lon_bnds=sh_mod.lon_bnds)

        return obs, mod, obs_timeint, mod_timeint
Esempio n. 27
0
    def stageData(self, m):

        energy_threshold = float(self.keywords.get("energy_threshold", 10))

        # Handle obs data
        dn_obs = Variable(filename=self.source.replace("albedo", "rsds"),
                          variable_name="rsds")
        up_obs = Variable(filename=self.source.replace("albedo", "rsus"),
                          variable_name="rsus")
        dn_obs, up_obs, obs = _albedo(dn_obs, up_obs, self.variable,
                                      energy_threshold)

        # Prune out uncovered regions
        if obs.time is None: raise il.NotTemporalVariable()
        self.pruneRegions(obs)

        # Handle model data
        dn_mod = m.extractTimeSeries("rsds",
                                     initial_time=obs.time_bnds[0, 0],
                                     final_time=obs.time_bnds[-1, 1],
                                     lats=None if obs.spatial else obs.lat,
                                     lons=None if obs.spatial else obs.lon)
        up_mod = m.extractTimeSeries("rsus",
                                     initial_time=obs.time_bnds[0, 0],
                                     final_time=obs.time_bnds[-1, 1],
                                     lats=None if obs.spatial else obs.lat,
                                     lons=None if obs.spatial else obs.lon)
        dn_mod, up_mod, mod = _albedo(dn_mod, up_mod, self.variable,
                                      energy_threshold)

        # Make variables comparable
        obs, mod = il.MakeComparable(obs,
                                     mod,
                                     mask_ref=True,
                                     clip_ref=True,
                                     logstring="[%s][%s]" %
                                     (self.longname, m.name))
        dn_obs, dn_mod = il.MakeComparable(dn_obs,
                                           dn_mod,
                                           mask_ref=True,
                                           clip_ref=True,
                                           logstring="[%s][%s]" %
                                           (self.longname, m.name))
        up_obs, up_mod = il.MakeComparable(up_obs,
                                           up_mod,
                                           mask_ref=True,
                                           clip_ref=True,
                                           logstring="[%s][%s]" %
                                           (self.longname, m.name))

        # Compute the mean albedo
        dn_obs = dn_obs.integrateInTime(mean=True)
        up_obs = up_obs.integrateInTime(mean=True)
        np.seterr(over='ignore', under='ignore')
        obs_timeint = np.ma.masked_array(up_obs.data / dn_obs.data,
                                         mask=(dn_obs.data.mask +
                                               up_obs.data.mask))
        np.seterr(over='warn', under='warn')
        obs_timeint = Variable(name=self.variable,
                               unit="1",
                               data=obs_timeint,
                               lat=dn_obs.lat,
                               lat_bnds=dn_obs.lat_bnds,
                               lon=dn_obs.lon,
                               lon_bnds=dn_obs.lon_bnds)
        dn_mod = dn_mod.integrateInTime(mean=True)
        up_mod = up_mod.integrateInTime(mean=True)
        np.seterr(over='ignore', under='ignore')
        mod_timeint = np.ma.masked_array(up_mod.data / dn_mod.data,
                                         mask=(dn_mod.data.mask +
                                               up_mod.data.mask))
        np.seterr(over='warn', under='warn')
        mod_timeint = Variable(name=self.variable,
                               unit="1",
                               data=mod_timeint,
                               lat=dn_mod.lat,
                               lat_bnds=dn_mod.lat_bnds,
                               lon=dn_mod.lon,
                               lon_bnds=dn_mod.lon_bnds)

        return obs, mod, obs_timeint, mod_timeint