def pad_trsfs(p, trsf_fmt):
    if not p.sequential and p.ref_path.split('.')[-1] == 'klb':
        im_shape = readheader(p.ref_path)['imagesize_tczyx'][-1:-4:-1]
    elif not p.sequential:
        im_shape = imread(p.ref_path).shape
    elif p.A0.split('.')[-1] == 'klb':
        im_shape = readheader(
            p.A0.format(t=p.ref_TP))['imagesize_tczyx'][-1:-4:-1]
    else:
        im_shape = imread(p.A0.format(t=p.ref_TP)).shape
    im = SpatialImage(np.ones(im_shape), dtype=np.uint8)
    im.voxelsize = p.voxel_size
    imsave(p.trsf_folder + 'tmp.klb', im)
    identity = np.identity(4)

    trsf_fmt_no_flo = trsf_fmt.replace('{flo:06d}', '%06d')
    new_trsf_fmt = 't{flo:06d}-{ref:06d}-padded.txt'
    new_trsf_fmt_no_flo = new_trsf_fmt.replace('{flo:06d}', '%06d')
    for t in p.not_to_do:
        np.savetxt(p.trsf_folder + trsf_fmt.format(flo=t, ref=p.ref_TP),
                   identity)

    call(p.path_to_bin +
         'changeMultipleTrsfs -trsf-format ' +
         p.trsf_folder + trsf_fmt_no_flo.format(ref=p.ref_TP) + \
         ' -index-reference %d -first %d -last %d '%(p.ref_TP,
                                                     min(p.time_points),
                                                     max(p.time_points)) + \
         ' -template ' + p.trsf_folder + 'tmp.klb ' + \
         ' -res ' + p.trsf_folder + new_trsf_fmt_no_flo.format(ref=p.ref_TP) + \
         ' -res-t ' + p.trsf_folder + 'template.klb ' + \
         ' -trsf-type %s -vs %f %f %f'%((p.trsf_type,)+p.voxel_size),
         shell=True)
def apply_trsf(p):
    trsf_fmt = 't{flo:06d}-{ref:06d}.txt'
    if p.lowess:
        trsf_fmt = 't{flo:06d}-{ref:06d}-filtered.txt'
    if p.trsf_interpolation:
        trsf_fmt = 't{flo:06d}-{ref:06d}-interpolated.txt'
    if p.padding:
        trsf_fmt = 't{flo:06d}-{ref:06d}-padded.txt'
        X, Y, Z = readheader(p.trsf_folder +
                             'template.klb')['imagesize_tczyx'][-1:-4:-1]
        template = p.trsf_folder + 'template.klb'
    elif p.A0.split('.')[-1] == 'klb':
        X, Y, Z = readheader(
            p.A0.format(t=p.ref_TP))['imagesize_tczyx'][-1:-4:-1]
        template = p.A0.format(t=p.ref_TP)
    else:
        X, Y, Z = imread(p.A0.format(t=p.ref_TP)).shape
        template = p.A0.format(t=p.ref_TP)

    xy_proj = np.zeros((X, Y, len(p.time_points)), dtype=np.uint16)
    xz_proj = np.zeros((X, Z, len(p.time_points)), dtype=np.uint16)
    yz_proj = np.zeros((Y, Z, len(p.time_points)), dtype=np.uint16)
    for i, t in enumerate(sorted(p.time_points)):
        folder_tmp = os.path.split(p.A0_out.format(t=t))[0]
        if not os.path.exists(folder_tmp):
            os.makedirs(folder_tmp)
        call(p.path_to_bin +
             "applyTrsf '%s' '%s' -trsf "%(p.A0.format(t=t), p.A0_out.format(t=t)) + \
             p.trsf_folder + trsf_fmt.format(flo=t, ref=p.ref_TP) + \
             ' -template ' + template + \
             ' -floating-voxel %f %f %f '%p.voxel_size + \
             ' -reference-voxel %f %f %f '%p.voxel_size + \
             ' -interpolation %s'%p.image_interpolation,
             shell=True)
        im = imread(p.A0_out.format(t=t))
        if p.projection_path is not None:
            xy_proj[:, :, i] = SpatialImage(np.max(im, axis=2))
            xz_proj[:, :, i] = SpatialImage(np.max(im, axis=1))
            yz_proj[:, :, i] = SpatialImage(np.max(im, axis=0))
    if p.projection_path is not None:
        if not os.path.exists(p.projection_path):
            os.makedirs(p.projection_path)
        p_to_data = p.projection_path
        num_s = p.file_name.find('{')
        num_e = p.file_name.find('}') + 1
        f_name = p.file_name.replace(p.file_name[num_s:num_e], '')
        if not os.path.exists(p_to_data.format(t=-1)):
            os.makedirs(p_to_data.format(t=-1))
        imsave((p_to_data + f_name.replace(p.im_ext, 'xyProjection.tif')),
               SpatialImage(xy_proj))
        imsave((p_to_data + f_name.replace(p.im_ext, 'xzProjection.tif')),
               SpatialImage(xz_proj))
        imsave((p_to_data + f_name.replace(p.im_ext, 'yzProjection.tif')),
               SpatialImage(yz_proj))
Esempio n. 3
0
def read_mask_and_save(path, t, X, ors, vs=(2., 2., 10.)):
    ''' Reads, resamples, masks and saves an image from klb to inr format
        Args:
            path: string, path of the input klb image
            t: int, time point to read
            X: int, value above which the image data is considered
            ors: 3x1 array_like, original aspect ratio
            vs: 3x1 array_like, new aspect ratio
        Return:
            im: string, path to the resampled masked image
    '''
    out = ('.TMP/' + os.path.basename(path) % (t)).replace('.klb', '.inr')
    if not os.path.exists(out):
        t_for_string = (t, ) * p.count('%')
        im = imread(path % t_for_string)
        im.voxelsize = vs

        mask = (slice(get_position(t, X), -1), slice(0, -1), slice(0, -1))
        im[mask] = 0

        if (ors != vs).any():
            im.voxelsize = ors
            imsave(out, im)
            os.system(path_to_bin + 'applyTrsf ' + out + ' ' + out +
                      ' -resize -vs %f %f %f ' % tuple(vs))
        else:
            imsave(out, im)

    return out
Esempio n. 4
0
def read_mask(path, t, X, ors, vs=(2., 2., 10.)):
    ''' Reads, masks and saves an image from klb to inr format
        Args:
            path: string, path of the input klb image
            t: int, time point to read
            X: int, value above which the image data is considered
            ors: 3x1 array_like, original aspect ratio
            vs: 3x1 array_like, new aspect ratio
        Return:
            im: NxMxL array_like, masked image
    '''
    out = ('.TMP/' + os.path.basename(path) % t).replace('.klb', '.inr')
    if not os.path.exists(out):
        t_for_string = (t, ) * p.count('%')
        im = imread(path % t_for_string)
        im.voxelsize = vs
        mask = (slice(get_position(t, X), -1), slice(0, -1), slice(0, -1))
        im[mask] = 0
        imsave(out, im)
    else:
        im = imread(out)
    return im
Esempio n. 5
0
def apply_single_trsf(params):
    ''' Apply a transformation to an image and build the xy, xz, yz MIP.
        Meant to be called in parallel by a multiprocess.Pool
    '''
    im_p, init_trsf, init_global_shape, trsf, final_shape, registered_folder_t, t = params
    curr_state = 'Not even started'
    # Since the process is error prone, we allow to catch preciselly the errors with the try/catch
    try:
        curr_state = 'reading input image.'
        im = imread(im_p)
        # build the final image for time t
        new_image = np.zeros(final_shape[::-1], dtype=im.dtype)
        starting_point = (trsf - init_trsf).astype(int)
        ending_point = starting_point + im.shape
        curr_state = 'applying trsf.'
        new_image[[
            slice(starting_point[i], ending_point[i])
            for i in range(2, -1, -1)
        ]] = im.transpose(2, 1, 0)
        if not os.path.exists(os.path.dirname(registered_folder_t)):
            os.makedirs(os.path.dirname(registered_folder_t))
        curr_state = 'saving image.'
        imsave(registered_folder_t, new_image)

        # build the final MIP for time t
        curr_state = 'building max projections.'
        pos_klb = registered_folder_t.find('.klb')
        projXY = np.max(new_image, axis=0)
        projXY = projXY.reshape(*((1, ) + projXY.shape))
        projXZ = np.max(new_image, axis=1)
        projXZ = projXZ.reshape(*((1, ) + projXZ.shape))
        projYZ = np.max(new_image, axis=2)
        projYZ = projYZ.reshape(*((1, ) + projYZ.shape))

        curr_state = 'saving xy projection.'
        imsave(
            registered_folder_t[:pos_klb] + '_xyProjection' +
            registered_folder_t[pos_klb:], projXY)
        curr_state = 'saving xz projection.'
        imsave(
            registered_folder_t[:pos_klb] + '_xzProjection' +
            registered_folder_t[pos_klb:], projXZ)
        curr_state = 'saving yz projection.'
        imsave(
            registered_folder_t[:pos_klb] + '_yzProjection' +
            registered_folder_t[pos_klb:], projYZ)
    except Exception as e:
        print 'Error for time point %d.' % t
        print 'Happened while ' + curr_state
        print 'Error raised:'
        print e
Esempio n. 6
0
def read_folder(folder, parallel):
    from IO import imread, SpatialImage
    data_files = sorted(os.listdir(folder))
    nb_images = len(data_files)
    first_image = imread(path.join(folder, data_files[0]))
    to_read = []
    for i, p in enumerate(data_files):
        to_read.append([path.join(folder, p), i])  #(i, path.join(folder, p)))

    if parallel:
        pool = Pool()
        out = pool.map(populate_im, to_read)
        pool.close()
        pool.terminate()
    else:
        out = []
        for param in to_read:
            out.append(populate_im(param))
    return SpatialImage(np.array(out).transpose(1, 2, 0),
                        voxelsize=first_image.voxelsize)
Esempio n. 7
0
def run_shift_proj(params):
    ''' Given the path to an image, the path to a transformation, at time and a reference time,
        build the 'xy', 'xz', 'yz' MIP of the shifted image.
        Meant to be run with multiprocess.Pool
        Returns:
            - list of the three projections and the time of the image
    '''
    p_im, p_trsf, t, r, vs = params
    im = imread(p_im % t)
    if not os.path.exists(p_trsf % (t, r)):
        final_shift = np.zeros((4, 4))
        final_shift[np.diag_indices(4)] = 1
    else:
        final_shift = read_trsf(p_trsf % (t, r))
    im_proj_1 = build_and_shift_proj(im,
                                     [final_shift[0, 3], final_shift[1, 3]], 2)
    im_proj_2 = build_and_shift_proj(im,
                                     [final_shift[1, 3], final_shift[2, 3]], 0)
    im_proj_3 = build_and_shift_proj(im,
                                     [final_shift[0, 3], final_shift[2, 3]], 1)
    return [im_proj_1, im_proj_2, im_proj_3, t]
Esempio n. 8
0
def assemble_projection(registered_folder, tp_list, folder_name, proj='xy'):
    ''' Build a "movie" of the MIP so they are easy to read
        Args:
            registered_folder: string, path to the folder that contain the registered images
            tp_list: [int, ], list of time points to process
            folder_name: string, output folder name
            proj: string ('xy', 'xz', 'yz'), projection to build; default 'xy'
    '''
    t_for_string2 = (tp_list[0], ) * registered_folder.count('%')
    registered_folder_t = registered_folder % t_for_string2
    pos_klb = registered_folder_t.find('.klb')
    dims = tuple(
        readheader(registered_folder_t[:pos_klb] + '_' + proj + 'Projection' +
                   registered_folder_t[pos_klb:])['imagesize_tczyx'][:2:-1])
    out = np.zeros(dims + (len(tp_list), ), dtype=np.uint16)
    for i, t in enumerate(tp_list):
        t_for_string2 = (t, ) * registered_folder.count('%')
        registered_folder_t = registered_folder % t_for_string2
        pos_klb = registered_folder_t.find('.klb')
        out[:, :,
            i] = imread(registered_folder_t[:pos_klb] + '_' + proj +
                        'Projection' + registered_folder_t[pos_klb:])[:, :, 0]

    imsave(folder_name + '_out/' + proj + '_proj.klb', SpatialImage(out))
def build_bdv(p):
    if not p.im_ext in ['klb']:  #['tif', 'klb', 'tiff']:
        print('Image format not adapted for BigDataViewer')
        return
    SpimData = ET.Element('SpimData')
    SpimData.set('version', "0.2")
    SpimData.set('encoding', "UTF-8")

    base_path = ET.SubElement(SpimData, 'BasePath')
    base_path.set('type', 'relative')
    base_path.text = '.'

    SequenceDescription = ET.SubElement(SpimData, 'SequenceDescription')

    ImageLoader = ET.SubElement(SequenceDescription, 'ImageLoader')
    ImageLoader.set('format', p.im_ext)
    Resolver = ET.SubElement(ImageLoader, 'Resolver')
    Resolver.set('type', "org.janelia.simview.klb.bdv.KlbPartitionResolver")
    ViewSetupTemplate = ET.SubElement(Resolver, 'ViewSetupTemplate')
    template = ET.SubElement(ViewSetupTemplate, 'template')
    template.text = p.bdv_im.format(t=p.to_register[0])
    timeTag = ET.SubElement(ViewSetupTemplate, 'timeTag')
    timeTag.text = p.time_tag

    ViewSetups = ET.SubElement(SequenceDescription, 'ViewSetups')
    ViewSetup = ET.SubElement(ViewSetups, 'ViewSetup')
    if p.im_ext == 'klb':
        im_size = tuple(
            readheader(p.A0.format(t=p.ref_TP))['imagesize_tczyx'][-1:-4:-1])
    else:
        im_size = tuple(imread(p.A0.format(t=p.ref_TP)).shape)
    do_viewSetup(ViewSetup, p, im_size, 0)

    Attributes = ET.SubElement(ViewSetups, 'Attributes')
    Attributes.set('name', 'illumination')
    Illumination = ET.SubElement(Attributes, 'Illumination')
    id_ = ET.SubElement(Illumination, 'id')
    id_.text = '0'
    name = ET.SubElement(Illumination, 'name')
    name.text = '0'

    Attributes = ET.SubElement(ViewSetups, 'Attributes')
    Attributes.set('name', 'channel')
    Channel = ET.SubElement(Attributes, 'Channel')
    id_ = ET.SubElement(Channel, 'id')
    id_.text = '0'
    name = ET.SubElement(Channel, 'name')
    name.text = '0'

    Attributes = ET.SubElement(ViewSetups, 'Attributes')
    Attributes.set('name', 'tile')
    Tile = ET.SubElement(Attributes, 'Tile')
    id_ = ET.SubElement(Tile, 'id')
    id_.text = '0'
    name = ET.SubElement(Tile, 'name')
    name.text = '0'

    Attributes = ET.SubElement(ViewSetups, 'Attributes')
    Attributes.set('name', 'angle')
    Angle = ET.SubElement(Attributes, 'Angle')
    id_ = ET.SubElement(Angle, 'id')
    id_.text = '0'
    name = ET.SubElement(Angle, 'name')
    name.text = '0'

    TimePoints = ET.SubElement(SequenceDescription, 'Timepoints')
    TimePoints.set('type', 'range')
    first = ET.SubElement(TimePoints, 'first')
    first.text = '%d' % min(p.to_register)
    last = ET.SubElement(TimePoints, 'last')
    last.text = '%d' % max(p.to_register)
    ViewRegistrations = ET.SubElement(SpimData, 'ViewRegistrations')
    b = min(p.to_register)
    e = max(p.to_register)
    for t in range(b, e + 1):
        do_ViewRegistration(ViewRegistrations, p, t)

    with open(p.out_bdv, 'w') as f:
        f.write(prettify(SpimData))
        f.close()
Esempio n. 10
0
def populate_im(parameters):
    from IO import imread, SpatialImage
    path, pos = parameters
    return imread(path)[:, :, 0]
        os.makedirs('.mask_images/')
    VF = lineageTree(path_VF)
    tb = VF.t_b
    te = VF.t_e

    if path_bary is not None:
        try:
            barycenters, b_dict = get_barycenter(path_bary, tb, te)
        except Exception as e:
            print "Wrong file path to barycenter, please specify the path to the .csv file."
            print "The process will continue as if no barycenter were provided,"
            print "disabling the computation of the spherical coordinates"
            print "error raised: ", e
            path_bary = None

    im = imread(path_mask)
    for l in labels:
        masked_im = im == l
        tmp = nd.binary_opening(masked_im, iterations=3)
        tmp = nd.binary_closing(tmp, iterations=4)
        imsave('.mask_images/%03d.tif' % l, SpatialImage(tmp).astype(np.uint8))

    mask_dir = '.mask_images/'
    if label_names is not None:
        masks = sorted([('.mask_images/%03d.tif' % l, label_names[i])
                        for i, l in enumerate(labels)],
                       cmp=lambda x1, x2: cmp(x1[1], x2[1]))
        masks = [m[0] for m in masks]
    else:
        masks = ['.mask_images/%03d.tif' % l for l in labels]
Esempio n. 12
0
                compose_trsf(min(to_register), ref_TP, p_out,
                             list(to_register))
                compose_trsf(max(to_register), ref_TP, p_out,
                             list(to_register))
                np.savetxt('{:s}t{t:06d}-{t:06d}.txt'.format(p_out, t=ref_TP),
                           np.identity(4))
            except Exception as e:
                print p_to_data
                print e

            if isinstance(ref_TP, int):
                if A0.split('.')[-1] == 'klb':
                    im_shape = readheader(
                        A0.format(t=ref_TP))['imagesize_tczyx'][-1:-4:-1]
                else:
                    im_shape = imread(A0.format(t=ref_TP)).shape
                im = SpatialImage(np.ones(im_shape), dtype=np.uint8)
                im.voxelsize = v_size
                imsave(p_out + 'tmp.klb', im)
                identity = np.identity(4)
                for t in not_to_do:
                    np.savetxt(
                        p_out +
                        't{flo:06d}-{ref:06d}.txt'.format(flo=t, ref=ref_TP),
                        identity)
                os.system('changeMultipleTrsfs -trsf-format ' + p_out + 't%%06d-%06d.txt '%(ref_TP) + \
                                              '-index-reference %d -first %d -last %d '%(ref_TP, min(time_points), max(time_points)) + \
                                              '-template ' + p_out + 'tmp.klb ' + \
                                              '-res ' + p_out + 't%%06d-%06d-padded.txt '%(ref_TP) + \
                                              '-res-t ' + p_out + 'template.klb ' + \
                                              '-trsf-type %s -vs %f %f %f'%((trsf_type,)+v_size))