def main(): log.basicConfig(level=log.INFO) # Set logging level PDF.set_default_mpl_format() input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/4f_WW_sl/PrEWInput" output_dir = input_dir + "/shape_checks/WWShapePlots" log.info("Looking in dir: {}".format(input_dir)) for file_path in tqdm(IOSH.find_files(input_dir, ".csv"), desc="files"): if "tau" in file_path: continue # Skipping tau distributions, not use right now plot_WW_distr(file_path, output_dir)
def main(): log.basicConfig(level=log.INFO) # Set logging level PDF.set_default_mpl_format() input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction"+\ "/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925" output_dir = input_dir + "/shape_checks/2fShapePlots" log.info("Looking in dir: {}".format(input_dir)) for file_path in tqdm(IOSH.find_files(input_dir, ".csv"), desc="files"): if not "2f_mu" in file_path: continue # Only draw mumu distributions plot_mumu_distr(file_path, output_dir)
import Plotting.Naming as PN import Shape.ShapeFunctions as SSF import Shape.ShapeTesting as SST log.basicConfig(level=log.INFO) # Set logging level PDF.set_default_mpl_format() MCLumi = 5000 # MC Statistics is 5ab^-1 input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925" # input_dir = "/home/jakob/DESY/MountPoints/DUST/TGCAnalysis/SampleProduction/NewMCProduction/2f_Z_l/PrEWInput/MuAcc_costheta_0.9925/TrueAngle" output_dir = input_dir + "/shape_checks" IOSH.create_dir(output_dir) log.info("Looking in dir: {}".format(input_dir)) for file_path in IOSH.find_files(input_dir, ".csv"): # Read the input file base_name = os.path.basename(file_path).replace(".csv","") log.info("Reading file: {}.csv".format(base_name)) reader = IOR.Reader(file_path) # Get the pandas dataframe for the cut histograms angle = "costh_f_star_true" if "TrueAngle" in input_dir else "costh_f_star" df = reader["Data"] bin_vals = np.array(df["Cross sections"]) bin_middles = np.array(df["BinCenters:{}".format(angle)]) edges_min = np.array(df["BinLow:{}".format(angle)]) edges_max = np.array(df["BinUp:{}".format(angle)]) bin_width = edges_max[0] - edges_min[0] # Rescale to MC Lumi