def as_gif(self, duration=100): """ Helpful to visualize it in a notebook """ self.labeled_frames[0]['frame'].save( "/tmp/out.gif", save_all=True, append_images=[f['frame'] for f in self.labeled_frames[1:]], duration=duration, loop=0, ) return IPythonImage(filename="/tmp/out.gif")
def show(self): return IPythonImage(self._thumbnail)
bottom, font=album_name_font, fill=outline_color) draw.text((band_x, band_y), top, (255, 255, 255), font=band_name_font) draw.text((album_x, album_y), bottom, (255, 255, 255), font=album_name_font) return img img = display_cover(top='top', bottom='bottom') img.save('sample-out.png') ## Use the following to read the img file and display the results IPythonImage(filename='sample-out.png') ## Display an image with the text 'Python' on top and 'Data Science' below img = display_cover(top='Python', bottom='Data Science') img.save('sample-out.png') IPythonImage(filename='sample-out.png') ## LOAD WIKIPEDIA PAGE import requests wikipedia_link = 'https://en.wikipedia.org/wiki/Special:Random' raw_random_wikipedia_page = requests.get(wikipedia_link) ## Grab text file with the page's XML page = raw_random_wikipedia_page.text ## print(page) title_begin_index = page.find("<title>") + 7
a=page.find('<title>') b=page.find('</title>') c=len('<title>') d=page[a+c:b] band_title=d.replace(' - Wikipedia','') wikipedia_link='https://en.wikipedia.org/wiki/Special:Random' raw_random_wikipedia_page=requests.get(wikipedia_link) page=raw_random_wikipedia_page.text print(page) a=page.find('<title>') b=page.find('</title>') c=len('<title>') d=page[a+c:b] album_title=d.replace(' - Wikipedia','') print("Your band: ", band_title) print("Your album: ", album_title) img=display_cover(top=band_title,bottom=album_title) img.save('gaurav2.png') IPythonImage(filename='gaurav.png') IPythonImage(filename='gaurav2.png')
def display_img(img_path): img = IPythonImage(filename=img_path) st.image(Image.open(img))
def display_cover(top, bottom): import requests img = display_cover(top='top', bottom='bottom') name = 'album_art_raw.png' # Now let's make get an album cover. # https://picsum.photos/ is a free service that offers random images. # Let's get a random image: album_art_raw = requests.get('https://picsum.photos/500/500/?random') img.save('album_art_raw.png') IPythonImage(filename='album_art_raw.png') # and save it as 'album_art_raw.png' with open(name, 'wb') as album_art_raw_file: album_art_raw_file.write(album_art_raw.content) # Now that we have our raw image, let's open it # and write our band and album name on it img = Image.open("album_art_raw.png") draw = ImageDraw.Draw(img) # We'll choose a font for our band and album title, # run "% ls /usr/share/fonts/truetype/dejavu" in a cell to see what else is available, # or download your own .ttf fonts! band_name_font = ImageFont.truetype( "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 25) # 25pt font album_name_font = ImageFont.truetype( "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20) # 20pt font # the x,y coordinates for where our album name and band name text will start # counted from the top left of the picture (in pixels) band_x, band_y = 50, 50 album_x, album_y = 50, 400 # Our text should be visible on any image. A good way # of accomplishing that is to use white text with a # black border. We'll use the technique shown here to draw the border: # https://mail.python.org/pipermail/image-sig/2009-May/005681.html outline_color = "black" draw.text((band_x - 1, band_y - 1), top, font=band_name_font, fill=outline_color) draw.text((band_x + 1, band_y - 1), top, font=band_name_font, fill=outline_color) draw.text((band_x - 1, band_y + 1), top, font=band_name_font, fill=outline_color) draw.text((band_x + 1, band_y + 1), top, font=band_name_font, fill=outline_color) draw.text((album_x - 1, album_y - 1), bottom, font=album_name_font, fill=outline_color) draw.text((album_x + 1, album_y - 1), bottom, font=album_name_font, fill=outline_color) draw.text((album_x - 1, album_y + 1), bottom, font=album_name_font, fill=outline_color) draw.text((album_x + 1, album_y + 1), bottom, font=album_name_font, fill=outline_color) draw.text((band_x, band_y), top, (255, 255, 255), font=band_name_font) draw.text((album_x, album_y), bottom, (255, 255, 255), font=album_name_font) return img
#创建模型 model = create_model(optimizer='Adam', kernel_initializer='uniform', activation='relu') model.summary() #---------------------------------------------------------------- # 第七步 模型绘制 #---------------------------------------------------------------- from keras.utils.vis_utils import plot_model from IPython.display import Image as IPythonImage plot_model(model, to_file="model.png", show_shapes=True) display(IPythonImage('model.png')) #---------------------------------------------------------------- # 第八步 模型训练+输出结果 #---------------------------------------------------------------- from keras.callbacks import ModelCheckpoint from sklearn.metrics import classification_report import matplotlib.pyplot as plt #绘制图形 def plot_loss_accuracy(history): # Loss plt.figure(figsize=[8, 6]) plt.plot(history.history['loss'], 'r', linewidth=3.0) plt.plot(history.history['val_loss'], 'b', linewidth=3.0)
def get_band_album_titles(): wikipedia_link = 'https://en.wikipedia.org/wiki/Special:Random' raw_random_wikipedia_page = requests.get(wikipedia_link) tree = fromstring(raw_random_wikipedia_page.content) raw_title = tree.findtext('.//title') band_title = raw_title.split('-') raw_random_wikipedia_page = requests.get(wikipedia_link) tree = fromstring(raw_random_wikipedia_page.content) raw_title = tree.findtext('.//title') album_title = raw_title.split('-') return (band_title[0].rstrip() + '-' + album_title[0].rstrip()) # first part use data science and python as bottom and top img = display_cover(top='Python', bottom='Data Science') img.save('sample-out.png') IPythonImage(filename='sample-out.png') # second part capture two random titles and make them top and bottom text band_title, album_title = get_band_album_titles().split('-') album_cover = display_cover(top=band_title, bottom=album_title) album_cover.save('album-cover.png') IPythonImage(filename='album-cover.png')
""" Распознавание продуктов """ # Для решения данной задачи в работе Viola Jones были использованы # (cascade object detection with AdaBoost learning algorithm) и # Histogram of Oriented Gradients (HOG). # получилась следующая точность from IPython.display import Image as IPythonImage IPythonImage('docs/images/packs_detection_accuracy.png', width=600) # сделав несколько улучшений получились рез-ты IPythonImage('docs/images/packs_detection_accuracy_improved.png', width=600) # Следующие задач компьюетрного зрения успешно решаются сейчас IPythonImage('docs/images/cv_common_tasks.png', width=800) # Модели https://github.com/tensorflow/models/tree/master/research/deeplab # успешно решают задачи семантической сегментации # Модели https://github.com/tensorflow/models/tree/master/research/object_detection # решают задачи нахождения предметов # Для распознавания пачек используем модель SSD Mobilenet V1 # натренированную на датасете COCO import cv2 import pandas as pd import numpy as np import os import io import tensorflow as tf
import requests as rq # In[31]: album_raw = rq.get("https://raw.githubusercontent.com/arneec/digits-recognition/master/5.jpg") # random images with open("image.jpg",'wb') as raw_file: #widthbairer raw_file.write(album_raw.content) # In[32]: img = Image.open("image.jpg") IPythonImage(filename= 'image.jpg') #To display the image # In[33]: img=misc.imread("image.jpg") # In[34]: print(features.shape) # In[35]:
draw.text((album_x + 1, album_y + 1), bottom, font=album_name_font, fill=outline_color) draw.text((band_x, band_y), top, (255, 255, 255), font=band_name_font) draw.text((album_x, album_y), bottom, (255, 255, 255), font=album_name_font) return img img = display_cover(top='top', bottom='bottom') img.save('sample-out.png') IPythonImage(filename='sample-out.png') album_cover = display_cover(top="Python", bottom="Data Science") album_cover.save("album-cover-out.png") IPythonImage(filename="album-cover-out.png") # ------------------------------------------------------------------------------------- wikipedia_link = 'https://en.wikipedia.org/wiki/Special:Random' raw_random_wikipedia_page = requests.get(wikipedia_link) page = raw_random_wikipedia_page.text #print(page) band_title = page[page.find('<title>') + 7:page.find(' - Wikipedia')] #band_title